使用人工神经网络的南印度语言手写数字识别系统

Leo Pauly, Rahul D. Raj, B. Paul
{"title":"使用人工神经网络的南印度语言手写数字识别系统","authors":"Leo Pauly, Rahul D. Raj, B. Paul","doi":"10.1109/IC3.2015.7346665","DOIUrl":null,"url":null,"abstract":"In this paper a novel approach for recognition of handwritten digits for South Indian languages using artificial neural networks (ANN) and Histogram of Oriented Gradients (HOG) features is presented. The images of documents containing the hand written digits are optically scanned and are segmented into individual images of isolated digits. HOG features are then extracted from these images and applied to the ANN for recognition. The system recognises the digits with an overall accuracy of 83.4%.","PeriodicalId":217950,"journal":{"name":"2015 Eighth International Conference on Contemporary Computing (IC3)","volume":"45 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Hand written digit recognition system for South Indian languages using artificial neural networks\",\"authors\":\"Leo Pauly, Rahul D. Raj, B. Paul\",\"doi\":\"10.1109/IC3.2015.7346665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a novel approach for recognition of handwritten digits for South Indian languages using artificial neural networks (ANN) and Histogram of Oriented Gradients (HOG) features is presented. The images of documents containing the hand written digits are optically scanned and are segmented into individual images of isolated digits. HOG features are then extracted from these images and applied to the ANN for recognition. The system recognises the digits with an overall accuracy of 83.4%.\",\"PeriodicalId\":217950,\"journal\":{\"name\":\"2015 Eighth International Conference on Contemporary Computing (IC3)\",\"volume\":\"45 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Eighth International Conference on Contemporary Computing (IC3)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3.2015.7346665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Eighth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2015.7346665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种利用人工神经网络(ANN)和梯度直方图(HOG)特征识别南印度语手写数字的新方法。包含手写数字的文档图像被光学扫描并分割成孤立数字的单个图像。然后从这些图像中提取HOG特征并应用于人工神经网络进行识别。该系统识别数字的总体准确率为83.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hand written digit recognition system for South Indian languages using artificial neural networks
In this paper a novel approach for recognition of handwritten digits for South Indian languages using artificial neural networks (ANN) and Histogram of Oriented Gradients (HOG) features is presented. The images of documents containing the hand written digits are optically scanned and are segmented into individual images of isolated digits. HOG features are then extracted from these images and applied to the ANN for recognition. The system recognises the digits with an overall accuracy of 83.4%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信