利用社会网络信息丰富冷启动个性化语言模型

Yu-Yang Huang, Rui Yan, Tsung-Ting Kuo, Shou-de Lin
{"title":"利用社会网络信息丰富冷启动个性化语言模型","authors":"Yu-Yang Huang, Rui Yan, Tsung-Ting Kuo, Shou-de Lin","doi":"10.3115/v1/P14-2100","DOIUrl":null,"url":null,"abstract":"We introduce a generalized framework to enrich the personalized language models for cold start users. The cold start problem is solved with content written by friends on social network services. Our framework consists of a mixture language model, whose mixture weights are es- timated with a factor graph. The factor graph is used to incorporate prior knowledge and heuris- tics to identify the most appropriate weights. The intrinsic and extrinsic experiments show significant improvement on cold start users.","PeriodicalId":436300,"journal":{"name":"Int. J. Comput. Linguistics Chin. Lang. Process.","volume":"56 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Enriching Cold Start Personalized Language Model Using Social Network Information\",\"authors\":\"Yu-Yang Huang, Rui Yan, Tsung-Ting Kuo, Shou-de Lin\",\"doi\":\"10.3115/v1/P14-2100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a generalized framework to enrich the personalized language models for cold start users. The cold start problem is solved with content written by friends on social network services. Our framework consists of a mixture language model, whose mixture weights are es- timated with a factor graph. The factor graph is used to incorporate prior knowledge and heuris- tics to identify the most appropriate weights. The intrinsic and extrinsic experiments show significant improvement on cold start users.\",\"PeriodicalId\":436300,\"journal\":{\"name\":\"Int. J. Comput. Linguistics Chin. Lang. Process.\",\"volume\":\"56 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Linguistics Chin. Lang. Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/v1/P14-2100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Linguistics Chin. Lang. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/v1/P14-2100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

我们引入了一个通用的框架来丰富冷启动用户的个性化语言模型。通过朋友在社交网络服务上写的内容来解决冷启动问题。该框架由一个混合语言模型组成,混合语言模型的混合权重用因子图估计。因子图结合了先验知识和启发式方法来确定最合适的权重。内部和外部实验表明,冷启动用户显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enriching Cold Start Personalized Language Model Using Social Network Information
We introduce a generalized framework to enrich the personalized language models for cold start users. The cold start problem is solved with content written by friends on social network services. Our framework consists of a mixture language model, whose mixture weights are es- timated with a factor graph. The factor graph is used to incorporate prior knowledge and heuris- tics to identify the most appropriate weights. The intrinsic and extrinsic experiments show significant improvement on cold start users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信