混合LSQR正则化残差范数行为

E. Havelková, I. Hnětynková
{"title":"混合LSQR正则化残差范数行为","authors":"E. Havelková, I. Hnětynková","doi":"10.21136/panm.2022.07","DOIUrl":null,"url":null,"abstract":"Hybrid LSQR represents a powerful method for regularization of large-scale discrete inverse problems, where ill-conditioning of the model matrix and ill-posedness of the problem make the solutions seriously sensitive to the unknown noise in the data. Hybrid LSQR combines the iterative Golub-Kahan bidiagonalization with the Tikhonov regularization of the projected problem. While the behavior of the residual norm for the pure LSQR is well understood and can be used to construct a stopping criterion, this is not the case for the hybrid method. Here we analyze the behavior of norms of approximate solutions and the corresponding residuals in Hybrid LSQR with respect to the Tikhonov regularization parameter. This helps to understand convergence properties of the hybrid approach. Numerical experiments demonstrate the results in finite precision arithmetic.","PeriodicalId":197168,"journal":{"name":"Programs and Algorithms of Numerical Mathematics 21","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Residual norm behavior for Hybrid LSQR regularization\",\"authors\":\"E. Havelková, I. Hnětynková\",\"doi\":\"10.21136/panm.2022.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid LSQR represents a powerful method for regularization of large-scale discrete inverse problems, where ill-conditioning of the model matrix and ill-posedness of the problem make the solutions seriously sensitive to the unknown noise in the data. Hybrid LSQR combines the iterative Golub-Kahan bidiagonalization with the Tikhonov regularization of the projected problem. While the behavior of the residual norm for the pure LSQR is well understood and can be used to construct a stopping criterion, this is not the case for the hybrid method. Here we analyze the behavior of norms of approximate solutions and the corresponding residuals in Hybrid LSQR with respect to the Tikhonov regularization parameter. This helps to understand convergence properties of the hybrid approach. Numerical experiments demonstrate the results in finite precision arithmetic.\",\"PeriodicalId\":197168,\"journal\":{\"name\":\"Programs and Algorithms of Numerical Mathematics 21\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Programs and Algorithms of Numerical Mathematics 21\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21136/panm.2022.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programs and Algorithms of Numerical Mathematics 21","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21136/panm.2022.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

混合LSQR是求解大规模离散反问题的一种有效方法,但由于模型矩阵的病态性和问题的病态性,使得解对数据中的未知噪声非常敏感。混合LSQR结合了投影问题的迭代Golub-Kahan双对角化和Tikhonov正则化。虽然纯LSQR的残差范数的行为很好理解,并且可以用来构造停止准则,但混合方法并非如此。本文分析了混合LSQR中近似解的范数及其残差相对于Tikhonov正则化参数的行为。这有助于理解混合方法的收敛特性。数值实验验证了有限精度算法的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Residual norm behavior for Hybrid LSQR regularization
Hybrid LSQR represents a powerful method for regularization of large-scale discrete inverse problems, where ill-conditioning of the model matrix and ill-posedness of the problem make the solutions seriously sensitive to the unknown noise in the data. Hybrid LSQR combines the iterative Golub-Kahan bidiagonalization with the Tikhonov regularization of the projected problem. While the behavior of the residual norm for the pure LSQR is well understood and can be used to construct a stopping criterion, this is not the case for the hybrid method. Here we analyze the behavior of norms of approximate solutions and the corresponding residuals in Hybrid LSQR with respect to the Tikhonov regularization parameter. This helps to understand convergence properties of the hybrid approach. Numerical experiments demonstrate the results in finite precision arithmetic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信