基于大型合成种群的复杂模拟器负载平衡方案

Bogdan Mucenic, Chaitanya Kaligotla, Abby Stevens, J. Ozik, Nicholson T. Collier, C. Macal
{"title":"基于大型合成种群的复杂模拟器负载平衡方案","authors":"Bogdan Mucenic, Chaitanya Kaligotla, Abby Stevens, J. Ozik, Nicholson T. Collier, C. Macal","doi":"10.1109/IPDPSW52791.2021.00156","DOIUrl":null,"url":null,"abstract":"We present our development of load balancing algorithms to efficiently distribute and parallelize the running of large-scale complex agent-based modeling (ABM) simulators on High-Performance Computing (HPC) resources. Our algorithm is based on partitioning the co-location network that emerges from an ABM’s underlying synthetic population. Variations of this algorithm are experimentally applied to investigate algorithmic choices on two factors that affect run-time performance. We report these experiments’ results on the CityCOVID ABM, built to model the spread of COVID-19 in the Chicago metropolitan region.","PeriodicalId":170832,"journal":{"name":"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Load Balancing Schemes for Large Synthetic Population-Based Complex Simulators\",\"authors\":\"Bogdan Mucenic, Chaitanya Kaligotla, Abby Stevens, J. Ozik, Nicholson T. Collier, C. Macal\",\"doi\":\"10.1109/IPDPSW52791.2021.00156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present our development of load balancing algorithms to efficiently distribute and parallelize the running of large-scale complex agent-based modeling (ABM) simulators on High-Performance Computing (HPC) resources. Our algorithm is based on partitioning the co-location network that emerges from an ABM’s underlying synthetic population. Variations of this algorithm are experimentally applied to investigate algorithmic choices on two factors that affect run-time performance. We report these experiments’ results on the CityCOVID ABM, built to model the spread of COVID-19 in the Chicago metropolitan region.\",\"PeriodicalId\":170832,\"journal\":{\"name\":\"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW52791.2021.00156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW52791.2021.00156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了负载平衡算法的发展,以有效地分布和并行运行大规模复杂基于代理的建模(ABM)模拟器在高性能计算(HPC)资源。我们的算法基于从ABM的底层合成种群中产生的共定位网络的分区。该算法的变体被实验应用于研究影响运行时性能的两个因素的算法选择。我们在CityCOVID ABM上报告了这些实验结果,该模型旨在模拟COVID-19在芝加哥大都会地区的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Load Balancing Schemes for Large Synthetic Population-Based Complex Simulators
We present our development of load balancing algorithms to efficiently distribute and parallelize the running of large-scale complex agent-based modeling (ABM) simulators on High-Performance Computing (HPC) resources. Our algorithm is based on partitioning the co-location network that emerges from an ABM’s underlying synthetic population. Variations of this algorithm are experimentally applied to investigate algorithmic choices on two factors that affect run-time performance. We report these experiments’ results on the CityCOVID ABM, built to model the spread of COVID-19 in the Chicago metropolitan region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信