子集通用有损压缩

Or Ordentlich, O. Shayevitz
{"title":"子集通用有损压缩","authors":"Or Ordentlich, O. Shayevitz","doi":"10.1109/ITW.2015.7133146","DOIUrl":null,"url":null,"abstract":"A lossy source code C with rate R for a discrete memoryless source S is called subset-universal if for every 0 <; R' <; R, almost every subset of 2nR' of its codewords achieves average distortion close to the source's distortion-rate function D(R'). In this paper we prove the asymptotic existence of such codes. Moreover, we show the asymptotic existence of a code that is subset-universal with respect to all sources with the same alphabet.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"437 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subset-universal lossy compression\",\"authors\":\"Or Ordentlich, O. Shayevitz\",\"doi\":\"10.1109/ITW.2015.7133146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A lossy source code C with rate R for a discrete memoryless source S is called subset-universal if for every 0 <; R' <; R, almost every subset of 2nR' of its codewords achieves average distortion close to the source's distortion-rate function D(R'). In this paper we prove the asymptotic existence of such codes. Moreover, we show the asymptotic existence of a code that is subset-universal with respect to all sources with the same alphabet.\",\"PeriodicalId\":174797,\"journal\":{\"name\":\"2015 IEEE Information Theory Workshop (ITW)\",\"volume\":\"437 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW.2015.7133146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2015.7133146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

离散无内存源S的率为R的有损源代码C称为子集泛型,如果对每一个0 <;R ' <;R,其码字的几乎每个2nR'子集都达到接近源失真率函数D(R')的平均失真。本文证明了这类码的渐近存在性。此外,我们还证明了一个码的渐近存在性,该码对于所有具有相同字母表的源都是子集泛的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subset-universal lossy compression
A lossy source code C with rate R for a discrete memoryless source S is called subset-universal if for every 0 <; R' <; R, almost every subset of 2nR' of its codewords achieves average distortion close to the source's distortion-rate function D(R'). In this paper we prove the asymptotic existence of such codes. Moreover, we show the asymptotic existence of a code that is subset-universal with respect to all sources with the same alphabet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信