{"title":"意见挖掘者:从非结构化的产品评论中挖掘无监督的意见","authors":"Samaneh Moghaddam, M. Ester","doi":"10.1145/1871437.1871739","DOIUrl":null,"url":null,"abstract":"Mining customer reviews (opinion mining) has emerged as an interesting new research direction. Most of the reviewing websites such as Epinions.com provide some additional information on top of the review text and overall rating, including a set of predefined aspects and their ratings, and a rating guideline which shows the intended interpretation of the numerical ratings. However, the existing methods have ignored this additional information. We claim that using this information, which is freely available, along with the review text can effectively improve the accuracy of opinion mining. We propose an unsupervised method, called Opinion Digger, which extracts important aspects of a product and determines the overall consumer's satisfaction for each, by estimating a rating in the range from 1 to 5. We demonstrate the improved effectiveness of our methods on a real life dataset that we crawled from Epinions.com.","PeriodicalId":310611,"journal":{"name":"Proceedings of the 19th ACM international conference on Information and knowledge management","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"209","resultStr":"{\"title\":\"Opinion digger: an unsupervised opinion miner from unstructured product reviews\",\"authors\":\"Samaneh Moghaddam, M. Ester\",\"doi\":\"10.1145/1871437.1871739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mining customer reviews (opinion mining) has emerged as an interesting new research direction. Most of the reviewing websites such as Epinions.com provide some additional information on top of the review text and overall rating, including a set of predefined aspects and their ratings, and a rating guideline which shows the intended interpretation of the numerical ratings. However, the existing methods have ignored this additional information. We claim that using this information, which is freely available, along with the review text can effectively improve the accuracy of opinion mining. We propose an unsupervised method, called Opinion Digger, which extracts important aspects of a product and determines the overall consumer's satisfaction for each, by estimating a rating in the range from 1 to 5. We demonstrate the improved effectiveness of our methods on a real life dataset that we crawled from Epinions.com.\",\"PeriodicalId\":310611,\"journal\":{\"name\":\"Proceedings of the 19th ACM international conference on Information and knowledge management\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"209\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM international conference on Information and knowledge management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1871437.1871739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1871437.1871739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Opinion digger: an unsupervised opinion miner from unstructured product reviews
Mining customer reviews (opinion mining) has emerged as an interesting new research direction. Most of the reviewing websites such as Epinions.com provide some additional information on top of the review text and overall rating, including a set of predefined aspects and their ratings, and a rating guideline which shows the intended interpretation of the numerical ratings. However, the existing methods have ignored this additional information. We claim that using this information, which is freely available, along with the review text can effectively improve the accuracy of opinion mining. We propose an unsupervised method, called Opinion Digger, which extracts important aspects of a product and determines the overall consumer's satisfaction for each, by estimating a rating in the range from 1 to 5. We demonstrate the improved effectiveness of our methods on a real life dataset that we crawled from Epinions.com.