{"title":"一种高效的无线传感器网络不均匀聚类机制","authors":"Chengfa Li, Mao Ye, Guihai Chen, Jie Wu","doi":"10.1109/MAHSS.2005.1542849","DOIUrl":null,"url":null,"abstract":"Clustering provides an effective way for prolonging the lifetime of a wireless sensor network. Current clustering algorithms usually utilize two techniques, selecting cluster heads with more residual energy and rotating cluster heads periodically, to distribute the energy consumption among nodes in each cluster and extend the network lifetime. However, they rarely consider the hot spots problem in multihop wireless sensor networks. When cluster heads cooperate with each other to forward their data to the base station, the cluster heads closer to the base station are burdened with heavy relay traffic and tend to die early, leaving areas of the network uncovered and causing network partition. To address the problem, we propose an energy-efficient unequal clustering (EEUC) mechanism for periodical data gathering in wireless sensor networks. It partitions the nodes into clusters of unequal size, and clusters closer to the base station have smaller sizes than those farther away from the base station. Thus cluster heads closer to the base station can preserve some energy for the inter-cluster data forwarding. We also propose an energy-aware multihop routing protocol for the inter-cluster communication. Simulation results show that our unequal clustering mechanism balances the energy consumption well among all sensor nodes and achieves an obvious improvement on the network lifetime","PeriodicalId":268267,"journal":{"name":"IEEE International Conference on Mobile Adhoc and Sensor Systems Conference, 2005.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"755","resultStr":"{\"title\":\"An energy-efficient unequal clustering mechanism for wireless sensor networks\",\"authors\":\"Chengfa Li, Mao Ye, Guihai Chen, Jie Wu\",\"doi\":\"10.1109/MAHSS.2005.1542849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering provides an effective way for prolonging the lifetime of a wireless sensor network. Current clustering algorithms usually utilize two techniques, selecting cluster heads with more residual energy and rotating cluster heads periodically, to distribute the energy consumption among nodes in each cluster and extend the network lifetime. However, they rarely consider the hot spots problem in multihop wireless sensor networks. When cluster heads cooperate with each other to forward their data to the base station, the cluster heads closer to the base station are burdened with heavy relay traffic and tend to die early, leaving areas of the network uncovered and causing network partition. To address the problem, we propose an energy-efficient unequal clustering (EEUC) mechanism for periodical data gathering in wireless sensor networks. It partitions the nodes into clusters of unequal size, and clusters closer to the base station have smaller sizes than those farther away from the base station. Thus cluster heads closer to the base station can preserve some energy for the inter-cluster data forwarding. We also propose an energy-aware multihop routing protocol for the inter-cluster communication. Simulation results show that our unequal clustering mechanism balances the energy consumption well among all sensor nodes and achieves an obvious improvement on the network lifetime\",\"PeriodicalId\":268267,\"journal\":{\"name\":\"IEEE International Conference on Mobile Adhoc and Sensor Systems Conference, 2005.\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"755\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Mobile Adhoc and Sensor Systems Conference, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MAHSS.2005.1542849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Mobile Adhoc and Sensor Systems Conference, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MAHSS.2005.1542849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An energy-efficient unequal clustering mechanism for wireless sensor networks
Clustering provides an effective way for prolonging the lifetime of a wireless sensor network. Current clustering algorithms usually utilize two techniques, selecting cluster heads with more residual energy and rotating cluster heads periodically, to distribute the energy consumption among nodes in each cluster and extend the network lifetime. However, they rarely consider the hot spots problem in multihop wireless sensor networks. When cluster heads cooperate with each other to forward their data to the base station, the cluster heads closer to the base station are burdened with heavy relay traffic and tend to die early, leaving areas of the network uncovered and causing network partition. To address the problem, we propose an energy-efficient unequal clustering (EEUC) mechanism for periodical data gathering in wireless sensor networks. It partitions the nodes into clusters of unequal size, and clusters closer to the base station have smaller sizes than those farther away from the base station. Thus cluster heads closer to the base station can preserve some energy for the inter-cluster data forwarding. We also propose an energy-aware multihop routing protocol for the inter-cluster communication. Simulation results show that our unequal clustering mechanism balances the energy consumption well among all sensor nodes and achieves an obvious improvement on the network lifetime