{"title":"使用细粒度任务分配的GPU三角形计数","authors":"Lin Hu, Naiqing Guan, Lei Zou","doi":"10.1109/ICDEW.2019.000-8","DOIUrl":null,"url":null,"abstract":"Due to the irregularity of graph data, designing an efficient GPU-based graph algorithm is always a challenging task. Inefficient memory access and work imbalance often limit GPU-based graph computing, even though GPU provides a massively parallelism computing fashion. To address that, in this paper, we propose a fine-grained task distribution strategy for triangle counting task. Extensive experiments and theoretical analysis confirm the superiority of our algorithm over both large real and synthetic graph datasets.","PeriodicalId":186190,"journal":{"name":"2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW)","volume":"64 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Triangle Counting on GPU Using Fine-Grained Task Distribution\",\"authors\":\"Lin Hu, Naiqing Guan, Lei Zou\",\"doi\":\"10.1109/ICDEW.2019.000-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the irregularity of graph data, designing an efficient GPU-based graph algorithm is always a challenging task. Inefficient memory access and work imbalance often limit GPU-based graph computing, even though GPU provides a massively parallelism computing fashion. To address that, in this paper, we propose a fine-grained task distribution strategy for triangle counting task. Extensive experiments and theoretical analysis confirm the superiority of our algorithm over both large real and synthetic graph datasets.\",\"PeriodicalId\":186190,\"journal\":{\"name\":\"2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW)\",\"volume\":\"64 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDEW.2019.000-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDEW.2019.000-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Triangle Counting on GPU Using Fine-Grained Task Distribution
Due to the irregularity of graph data, designing an efficient GPU-based graph algorithm is always a challenging task. Inefficient memory access and work imbalance often limit GPU-based graph computing, even though GPU provides a massively parallelism computing fashion. To address that, in this paper, we propose a fine-grained task distribution strategy for triangle counting task. Extensive experiments and theoretical analysis confirm the superiority of our algorithm over both large real and synthetic graph datasets.