局部到统一回归量的低频协整回归和未知形式的序列依赖

Jungbin Hwang, Gonzalo Valdés
{"title":"局部到统一回归量的低频协整回归和未知形式的序列依赖","authors":"Jungbin Hwang, Gonzalo Valdés","doi":"10.1080/07350015.2023.2166513","DOIUrl":null,"url":null,"abstract":"This paper develops new t and F inferences in a low-frequency transformed triangular cointegrating regression when one may not be sure the economic variables are exact unit root processes. We first show that the low-frequency transformed and augmented OLS (TA-OLS) regression exhibits an asymptotic bias term in the limiting distribution. As a result, the size distortion of the testing cointegration vector can be substantially large for even minor deviations from the unit root regressors. We develop a method to correct the asymptotic bias for the cointegration vector. Our modified TA-OLS statistics adjust the locational bias and reflect the estimation uncertainty of the long-run endogeneity parameter in the bias correction term and lead to standard t and F critical values. Based on the modified test statistics, we provide Bonferroni-based inferences to test the cointegration vector. Monte Carlo results show that our approach has the correct size and appealing power for a wide range of local to unity parameters. Also, we find that our method has advantages to the IVX approach when the serial dependence and the long-run endogeneity in the cointegration system are important.","PeriodicalId":118766,"journal":{"name":"Journal of Business & Economic Statistics","volume":"19 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Low Frequency Cointegrating Regression with Local to Unity Regressors and Unknown Form of Serial Dependence *\",\"authors\":\"Jungbin Hwang, Gonzalo Valdés\",\"doi\":\"10.1080/07350015.2023.2166513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops new t and F inferences in a low-frequency transformed triangular cointegrating regression when one may not be sure the economic variables are exact unit root processes. We first show that the low-frequency transformed and augmented OLS (TA-OLS) regression exhibits an asymptotic bias term in the limiting distribution. As a result, the size distortion of the testing cointegration vector can be substantially large for even minor deviations from the unit root regressors. We develop a method to correct the asymptotic bias for the cointegration vector. Our modified TA-OLS statistics adjust the locational bias and reflect the estimation uncertainty of the long-run endogeneity parameter in the bias correction term and lead to standard t and F critical values. Based on the modified test statistics, we provide Bonferroni-based inferences to test the cointegration vector. Monte Carlo results show that our approach has the correct size and appealing power for a wide range of local to unity parameters. Also, we find that our method has advantages to the IVX approach when the serial dependence and the long-run endogeneity in the cointegration system are important.\",\"PeriodicalId\":118766,\"journal\":{\"name\":\"Journal of Business & Economic Statistics\",\"volume\":\"19 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Business & Economic Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07350015.2023.2166513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business & Economic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07350015.2023.2166513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文在不能确定经济变量是精确单位根过程的情况下,给出了低频变换三角协整回归中新的t和F推论。我们首先证明了低频变换和增广OLS (TA-OLS)回归在极限分布中具有渐近偏倚项。因此,测试协整向量的大小失真对于单位根回归量的微小偏差来说可能是相当大的。我们提出了一种校正协整向量渐近偏差的方法。我们改进的TA-OLS统计量调整了位置偏差,反映了偏差校正项中长期内生性参数的估计不确定性,并导致标准t和F临界值。基于修正的检验统计量,我们提供基于bonferroni的推论来检验协整向量。蒙特卡罗结果表明,我们的方法对于大范围的局部到单位参数具有正确的大小和吸引力。此外,我们发现当协整系统中的序列依赖性和长期内生性很重要时,我们的方法比IVX方法有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low Frequency Cointegrating Regression with Local to Unity Regressors and Unknown Form of Serial Dependence *
This paper develops new t and F inferences in a low-frequency transformed triangular cointegrating regression when one may not be sure the economic variables are exact unit root processes. We first show that the low-frequency transformed and augmented OLS (TA-OLS) regression exhibits an asymptotic bias term in the limiting distribution. As a result, the size distortion of the testing cointegration vector can be substantially large for even minor deviations from the unit root regressors. We develop a method to correct the asymptotic bias for the cointegration vector. Our modified TA-OLS statistics adjust the locational bias and reflect the estimation uncertainty of the long-run endogeneity parameter in the bias correction term and lead to standard t and F critical values. Based on the modified test statistics, we provide Bonferroni-based inferences to test the cointegration vector. Monte Carlo results show that our approach has the correct size and appealing power for a wide range of local to unity parameters. Also, we find that our method has advantages to the IVX approach when the serial dependence and the long-run endogeneity in the cointegration system are important.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信