斯坦纳树的快速再优化

Subhash Panwar, Suneeta Agarwaal
{"title":"斯坦纳树的快速再优化","authors":"Subhash Panwar, Suneeta Agarwaal","doi":"10.1109/IADCC.2010.5423050","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss the problem of reoptimization of Steiner tree. We are given an instance of Graph and also an optimal Steiner tree of it. If some changes occur later on in the given graph, a new optimal Steiner tree is to be determined. This process is known as re optimization. We consider two cases of change: one is addition of a new edge and second is, Deletion of an existing edge from the given graph. For both the cases, we provide approximation algorithms with corresponding approximation ratio equal to (1+δ) where 0≪δ≪1.","PeriodicalId":249763,"journal":{"name":"2010 IEEE 2nd International Advance Computing Conference (IACC)","volume":"5 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast reoptimization of Steiner trees\",\"authors\":\"Subhash Panwar, Suneeta Agarwaal\",\"doi\":\"10.1109/IADCC.2010.5423050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss the problem of reoptimization of Steiner tree. We are given an instance of Graph and also an optimal Steiner tree of it. If some changes occur later on in the given graph, a new optimal Steiner tree is to be determined. This process is known as re optimization. We consider two cases of change: one is addition of a new edge and second is, Deletion of an existing edge from the given graph. For both the cases, we provide approximation algorithms with corresponding approximation ratio equal to (1+δ) where 0≪δ≪1.\",\"PeriodicalId\":249763,\"journal\":{\"name\":\"2010 IEEE 2nd International Advance Computing Conference (IACC)\",\"volume\":\"5 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 2nd International Advance Computing Conference (IACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IADCC.2010.5423050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 2nd International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IADCC.2010.5423050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了斯坦纳树的再优化问题。给出了图的一个实例及其最优Steiner树。如果在给定的图中稍后发生了一些变化,则需要确定一个新的最优Steiner树。这个过程被称为再优化。我们考虑两种变化情况:一种是增加一条新边,另一种是从给定图中删除一条现有边。对于这两种情况,我们都提供了近似算法,其近似比为(1+δ),其中0≪δ≪1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast reoptimization of Steiner trees
In this paper, we discuss the problem of reoptimization of Steiner tree. We are given an instance of Graph and also an optimal Steiner tree of it. If some changes occur later on in the given graph, a new optimal Steiner tree is to be determined. This process is known as re optimization. We consider two cases of change: one is addition of a new edge and second is, Deletion of an existing edge from the given graph. For both the cases, we provide approximation algorithms with corresponding approximation ratio equal to (1+δ) where 0≪δ≪1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信