基于层次SOM的彩色立体图像中物体的识别

G. Bertolini, S. Ramat
{"title":"基于层次SOM的彩色立体图像中物体的识别","authors":"G. Bertolini, S. Ramat","doi":"10.1109/CRV.2007.39","DOIUrl":null,"url":null,"abstract":"Identification and recognition of objects in digital images is a fundamental task in robotic vision. Here we propose an approach based on clustering of feature extracted from HSV color space and depth, using a hierarchical self organizing map (HSOM). Binocular images are first preprocessed using a watershed algorithm; adjacent regions are then merged based on HSV similarities. For each region we compute a six element features vector: median depth (computed as disparity), median H, S, V values, and the X and Y coordinates of its centroid. These are the input to the HSOM network which is allowed to learn on the first image of a sequence. The trained network is then used to segment other images of the same scene. If, on the new image, the same neuron responds to regions that belong to the same object, the object is considered as recognized. The technique achieves good results, recognizing up to 82% of the objects.","PeriodicalId":304254,"journal":{"name":"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Identification and Recognition of Objects in Color Stereo Images Using a Hierachial SOM\",\"authors\":\"G. Bertolini, S. Ramat\",\"doi\":\"10.1109/CRV.2007.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identification and recognition of objects in digital images is a fundamental task in robotic vision. Here we propose an approach based on clustering of feature extracted from HSV color space and depth, using a hierarchical self organizing map (HSOM). Binocular images are first preprocessed using a watershed algorithm; adjacent regions are then merged based on HSV similarities. For each region we compute a six element features vector: median depth (computed as disparity), median H, S, V values, and the X and Y coordinates of its centroid. These are the input to the HSOM network which is allowed to learn on the first image of a sequence. The trained network is then used to segment other images of the same scene. If, on the new image, the same neuron responds to regions that belong to the same object, the object is considered as recognized. The technique achieves good results, recognizing up to 82% of the objects.\",\"PeriodicalId\":304254,\"journal\":{\"name\":\"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2007.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2007.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

数字图像中物体的识别是机器人视觉的一项基本任务。本文提出了一种基于HSV颜色空间和深度提取特征聚类的方法,使用层次自组织映射(HSOM)。首先使用分水岭算法对双目图像进行预处理;然后根据HSV相似度合并相邻区域。对于每个区域,我们计算六个元素特征向量:中位数深度(以视差计算),中位数H, S, V值以及其质心的X和Y坐标。这些是HSOM网络的输入,它可以在序列的第一张图像上学习。然后使用训练好的网络来分割同一场景的其他图像。如果在新图像上,相同的神经元对属于同一物体的区域做出反应,则认为该物体已被识别。该技术取得了良好的效果,识别了高达82%的物体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification and Recognition of Objects in Color Stereo Images Using a Hierachial SOM
Identification and recognition of objects in digital images is a fundamental task in robotic vision. Here we propose an approach based on clustering of feature extracted from HSV color space and depth, using a hierarchical self organizing map (HSOM). Binocular images are first preprocessed using a watershed algorithm; adjacent regions are then merged based on HSV similarities. For each region we compute a six element features vector: median depth (computed as disparity), median H, S, V values, and the X and Y coordinates of its centroid. These are the input to the HSOM network which is allowed to learn on the first image of a sequence. The trained network is then used to segment other images of the same scene. If, on the new image, the same neuron responds to regions that belong to the same object, the object is considered as recognized. The technique achieves good results, recognizing up to 82% of the objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信