带DER渗透的径向分布馈线潮流计算方法

P. Anagnostopoulos, S. Papathanassiou
{"title":"带DER渗透的径向分布馈线潮流计算方法","authors":"P. Anagnostopoulos, S. Papathanassiou","doi":"10.6000/1929-6002.2019.08.01","DOIUrl":null,"url":null,"abstract":"This paper presents a novel power flow method suitable for radial distribution feeders, which consists a modification of the simplified power flow concept known as the DistFlow method, already available in the literature. The proposed method relies upon a differentiated manipulation of power losses, which are taken into account in voltage calculations, unlike other simplified methods, where losses are totally neglected. As a result, calculation accuracy is greatly improved, in terms of node voltages, losses and overall active & reactive power flows. In addition, the proposed method is non-iterative and entirely linear, being easily implementable and fast in execution. The method is particularly suited for feeders with a high penetration of Distributed Energy Resources (DER), providing results that closely match those of a full non-linear power flow and are considerably more accurate than the traditional linearized distribution power flow methods, without any increase in computational burden. The new method is applied to a variety of case studies in the paper, to demonstrate its accuracy and effectiveness, comparing its performance with the simplified (linearized) DistFlow and a conventional non-linear power flow method.","PeriodicalId":394478,"journal":{"name":"Journal of Technology Innovations in Renewable Energy","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Power Flow Method for Radial Distribution Feeders with DER Penetration\",\"authors\":\"P. Anagnostopoulos, S. Papathanassiou\",\"doi\":\"10.6000/1929-6002.2019.08.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel power flow method suitable for radial distribution feeders, which consists a modification of the simplified power flow concept known as the DistFlow method, already available in the literature. The proposed method relies upon a differentiated manipulation of power losses, which are taken into account in voltage calculations, unlike other simplified methods, where losses are totally neglected. As a result, calculation accuracy is greatly improved, in terms of node voltages, losses and overall active & reactive power flows. In addition, the proposed method is non-iterative and entirely linear, being easily implementable and fast in execution. The method is particularly suited for feeders with a high penetration of Distributed Energy Resources (DER), providing results that closely match those of a full non-linear power flow and are considerably more accurate than the traditional linearized distribution power flow methods, without any increase in computational burden. The new method is applied to a variety of case studies in the paper, to demonstrate its accuracy and effectiveness, comparing its performance with the simplified (linearized) DistFlow and a conventional non-linear power flow method.\",\"PeriodicalId\":394478,\"journal\":{\"name\":\"Journal of Technology Innovations in Renewable Energy\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Technology Innovations in Renewable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6000/1929-6002.2019.08.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Technology Innovations in Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6000/1929-6002.2019.08.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种适用于径向分布馈线的新型潮流方法,该方法是对已有文献中的简化潮流概念DistFlow方法的改进。所提出的方法依赖于对功率损耗的差异化操作,在电压计算中考虑到功率损耗,而不像其他简化方法,在这些方法中损耗完全被忽略。因此,在节点电压、损耗和总体有功无功潮流方面,计算精度大大提高。此外,该方法具有非迭代和完全线性的特点,易于实现,执行速度快。该方法特别适用于分布式能源(DER)渗透率高的馈线,提供的结果与完全非线性潮流的结果非常接近,并且比传统的线性化配电潮流方法更加精确,而不会增加计算负担。本文将该方法应用于多种实例分析,验证了其准确性和有效性,并将其与简化(线性化)DistFlow和传统非线性潮流方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Power Flow Method for Radial Distribution Feeders with DER Penetration
This paper presents a novel power flow method suitable for radial distribution feeders, which consists a modification of the simplified power flow concept known as the DistFlow method, already available in the literature. The proposed method relies upon a differentiated manipulation of power losses, which are taken into account in voltage calculations, unlike other simplified methods, where losses are totally neglected. As a result, calculation accuracy is greatly improved, in terms of node voltages, losses and overall active & reactive power flows. In addition, the proposed method is non-iterative and entirely linear, being easily implementable and fast in execution. The method is particularly suited for feeders with a high penetration of Distributed Energy Resources (DER), providing results that closely match those of a full non-linear power flow and are considerably more accurate than the traditional linearized distribution power flow methods, without any increase in computational burden. The new method is applied to a variety of case studies in the paper, to demonstrate its accuracy and effectiveness, comparing its performance with the simplified (linearized) DistFlow and a conventional non-linear power flow method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信