{"title":"三维地震数据的自动相分类与层位跟踪","authors":"A. J. Bugge, J. Lie, S. Clark","doi":"10.3997/2214-4609.201803010","DOIUrl":null,"url":null,"abstract":"We present an automatic method that first classify seismic facies and then interpret seismic horizons through four steps; local binary pattern segmentation, unsupervised clustering, supervised classification and dynamic time warping. Our approach avoids the need to manually label data, reducing the need for specialist geological knowledge. We test our method on a structurally complex seismic cube acquired in the SW Barents Sea, targeting rotated Mesozoic fault blocks.","PeriodicalId":231338,"journal":{"name":"First EAGE/PESGB Workshop Machine Learning","volume":"2003 304","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automatic Facies Classification And Horizon Tracking In 3D Seismic Data\",\"authors\":\"A. J. Bugge, J. Lie, S. Clark\",\"doi\":\"10.3997/2214-4609.201803010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an automatic method that first classify seismic facies and then interpret seismic horizons through four steps; local binary pattern segmentation, unsupervised clustering, supervised classification and dynamic time warping. Our approach avoids the need to manually label data, reducing the need for specialist geological knowledge. We test our method on a structurally complex seismic cube acquired in the SW Barents Sea, targeting rotated Mesozoic fault blocks.\",\"PeriodicalId\":231338,\"journal\":{\"name\":\"First EAGE/PESGB Workshop Machine Learning\",\"volume\":\"2003 304\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First EAGE/PESGB Workshop Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201803010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First EAGE/PESGB Workshop Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201803010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic Facies Classification And Horizon Tracking In 3D Seismic Data
We present an automatic method that first classify seismic facies and then interpret seismic horizons through four steps; local binary pattern segmentation, unsupervised clustering, supervised classification and dynamic time warping. Our approach avoids the need to manually label data, reducing the need for specialist geological knowledge. We test our method on a structurally complex seismic cube acquired in the SW Barents Sea, targeting rotated Mesozoic fault blocks.