三维地震数据的自动相分类与层位跟踪

A. J. Bugge, J. Lie, S. Clark
{"title":"三维地震数据的自动相分类与层位跟踪","authors":"A. J. Bugge, J. Lie, S. Clark","doi":"10.3997/2214-4609.201803010","DOIUrl":null,"url":null,"abstract":"We present an automatic method that first classify seismic facies and then interpret seismic horizons through four steps; local binary pattern segmentation, unsupervised clustering, supervised classification and dynamic time warping. Our approach avoids the need to manually label data, reducing the need for specialist geological knowledge. We test our method on a structurally complex seismic cube acquired in the SW Barents Sea, targeting rotated Mesozoic fault blocks.","PeriodicalId":231338,"journal":{"name":"First EAGE/PESGB Workshop Machine Learning","volume":"2003 304","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automatic Facies Classification And Horizon Tracking In 3D Seismic Data\",\"authors\":\"A. J. Bugge, J. Lie, S. Clark\",\"doi\":\"10.3997/2214-4609.201803010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an automatic method that first classify seismic facies and then interpret seismic horizons through four steps; local binary pattern segmentation, unsupervised clustering, supervised classification and dynamic time warping. Our approach avoids the need to manually label data, reducing the need for specialist geological knowledge. We test our method on a structurally complex seismic cube acquired in the SW Barents Sea, targeting rotated Mesozoic fault blocks.\",\"PeriodicalId\":231338,\"journal\":{\"name\":\"First EAGE/PESGB Workshop Machine Learning\",\"volume\":\"2003 304\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First EAGE/PESGB Workshop Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201803010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First EAGE/PESGB Workshop Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201803010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种先划分地震相,再分四步解释地震层的自动方法;局部二值模式分割,无监督聚类,监督分类和动态时间翘曲。我们的方法避免了手动标记数据的需要,减少了对专业地质知识的需求。我们在巴伦支海西南部一个结构复杂的地震立方体上测试了我们的方法,目标是旋转的中生代断块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Facies Classification And Horizon Tracking In 3D Seismic Data
We present an automatic method that first classify seismic facies and then interpret seismic horizons through four steps; local binary pattern segmentation, unsupervised clustering, supervised classification and dynamic time warping. Our approach avoids the need to manually label data, reducing the need for specialist geological knowledge. We test our method on a structurally complex seismic cube acquired in the SW Barents Sea, targeting rotated Mesozoic fault blocks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信