CluClas:用于准确高效网络分类的混合聚类-分类方法

A. Fahad, K. Alharthi, Z. Tari, Abdulmohsen Almalawi, I. Khalil
{"title":"CluClas:用于准确高效网络分类的混合聚类-分类方法","authors":"A. Fahad, K. Alharthi, Z. Tari, Abdulmohsen Almalawi, I. Khalil","doi":"10.1109/LCN.2014.6925769","DOIUrl":null,"url":null,"abstract":"The traffic classification is the foundation for many network activities, such as Quality of Service (QoS), security monitoring, Lawful Interception and Intrusion Detection Systems (IDS). A recent statistics-based approach to address the unsatisfactory results of traditional port-based and payload-based approaches has attracted attention. However, the presence of non-informative attributes and noise instances degrade the performance of this approach. Thus, to address this problem, in this paper, we propose a hybrid clustering-classification approach (called CluClas) to improve the accuracy and efficiency of network traffic classification by selecting informative attributes and representative instances. An extensive empirical study on four traffic data sets shows the effectiveness of our proposed approach.","PeriodicalId":143262,"journal":{"name":"39th Annual IEEE Conference on Local Computer Networks","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"CluClas: Hybrid clustering-classification approach for accurate and efficient network classification\",\"authors\":\"A. Fahad, K. Alharthi, Z. Tari, Abdulmohsen Almalawi, I. Khalil\",\"doi\":\"10.1109/LCN.2014.6925769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traffic classification is the foundation for many network activities, such as Quality of Service (QoS), security monitoring, Lawful Interception and Intrusion Detection Systems (IDS). A recent statistics-based approach to address the unsatisfactory results of traditional port-based and payload-based approaches has attracted attention. However, the presence of non-informative attributes and noise instances degrade the performance of this approach. Thus, to address this problem, in this paper, we propose a hybrid clustering-classification approach (called CluClas) to improve the accuracy and efficiency of network traffic classification by selecting informative attributes and representative instances. An extensive empirical study on four traffic data sets shows the effectiveness of our proposed approach.\",\"PeriodicalId\":143262,\"journal\":{\"name\":\"39th Annual IEEE Conference on Local Computer Networks\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"39th Annual IEEE Conference on Local Computer Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LCN.2014.6925769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"39th Annual IEEE Conference on Local Computer Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN.2014.6925769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

流分类是服务质量(QoS)、安全监控、合法拦截和入侵检测系统(IDS)等许多网络活动的基础。最近一项基于统计的方法引起了人们的注意,该方法旨在解决传统的基于港口和基于有效载荷的方法的不满意结果。然而,非信息属性和噪声实例的存在降低了该方法的性能。因此,为了解决这一问题,本文提出了一种混合聚类分类方法(称为CluClas),通过选择信息属性和代表性实例来提高网络流量分类的准确性和效率。对四个交通数据集的广泛实证研究表明了我们提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CluClas: Hybrid clustering-classification approach for accurate and efficient network classification
The traffic classification is the foundation for many network activities, such as Quality of Service (QoS), security monitoring, Lawful Interception and Intrusion Detection Systems (IDS). A recent statistics-based approach to address the unsatisfactory results of traditional port-based and payload-based approaches has attracted attention. However, the presence of non-informative attributes and noise instances degrade the performance of this approach. Thus, to address this problem, in this paper, we propose a hybrid clustering-classification approach (called CluClas) to improve the accuracy and efficiency of network traffic classification by selecting informative attributes and representative instances. An extensive empirical study on four traffic data sets shows the effectiveness of our proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信