演讲技巧的视听评价

Tzvi Michelson, Shmuel Peleg
{"title":"演讲技巧的视听评价","authors":"Tzvi Michelson, Shmuel Peleg","doi":"10.1109/TransAI51903.2021.00026","DOIUrl":null,"url":null,"abstract":"What makes a talk successful? Is it the content or the presentation? We try to estimate the contribution of the speaker’s oratory skills to the talk’s success, while ignoring the content of the talk. By oratory skills we refer to facial expressions, motions and gestures, as well as the vocal features. We use TED Talks as our dataset, and measure the success of each talk by its view count. Using this dataset we train a neural network to assess the oratory skills in a talk through three factors: body pose, facial expressions, and acoustic features.Most previous work on automatic evaluation of oratory skills uses hand-crafted expert annotations for both the quality of the talk and for the identification of predefined actions. Unlike prior art, we measure the quality to be equivalent to the view count of the talk as counted by TED, and allow the network to automatically learn the actions, expressions, and sounds that are relevant to the success of a talk. We find that oratory skills alone contribute substantially to the chances of a talk being successful.","PeriodicalId":426766,"journal":{"name":"2021 Third International Conference on Transdisciplinary AI (TransAI)","volume":"2 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Audio-Visual Evaluation of Oratory Skills\",\"authors\":\"Tzvi Michelson, Shmuel Peleg\",\"doi\":\"10.1109/TransAI51903.2021.00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"What makes a talk successful? Is it the content or the presentation? We try to estimate the contribution of the speaker’s oratory skills to the talk’s success, while ignoring the content of the talk. By oratory skills we refer to facial expressions, motions and gestures, as well as the vocal features. We use TED Talks as our dataset, and measure the success of each talk by its view count. Using this dataset we train a neural network to assess the oratory skills in a talk through three factors: body pose, facial expressions, and acoustic features.Most previous work on automatic evaluation of oratory skills uses hand-crafted expert annotations for both the quality of the talk and for the identification of predefined actions. Unlike prior art, we measure the quality to be equivalent to the view count of the talk as counted by TED, and allow the network to automatically learn the actions, expressions, and sounds that are relevant to the success of a talk. We find that oratory skills alone contribute substantially to the chances of a talk being successful.\",\"PeriodicalId\":426766,\"journal\":{\"name\":\"2021 Third International Conference on Transdisciplinary AI (TransAI)\",\"volume\":\"2 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Third International Conference on Transdisciplinary AI (TransAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TransAI51903.2021.00026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Third International Conference on Transdisciplinary AI (TransAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TransAI51903.2021.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

是什么让演讲成功?是内容还是展示?我们试图估计演讲者的演讲技巧对演讲成功的贡献,而忽略了演讲的内容。通过演讲技巧,我们指的是面部表情,动作和手势,以及声音特征。我们使用TED演讲作为我们的数据集,并通过其观看次数来衡量每个演讲的成功程度。使用这个数据集,我们训练了一个神经网络,通过三个因素来评估演讲中的演讲技巧:身体姿势、面部表情和声学特征。先前大多数关于演讲技能自动评估的工作都使用手工制作的专家注释来确定演讲的质量和预定义的动作。与先前的技术不同,我们测量的质量与TED计算的演讲的观看次数相等,并允许网络自动学习与演讲成功相关的动作,表情和声音。我们发现,演讲技巧本身对演讲成功的几率有很大的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Audio-Visual Evaluation of Oratory Skills
What makes a talk successful? Is it the content or the presentation? We try to estimate the contribution of the speaker’s oratory skills to the talk’s success, while ignoring the content of the talk. By oratory skills we refer to facial expressions, motions and gestures, as well as the vocal features. We use TED Talks as our dataset, and measure the success of each talk by its view count. Using this dataset we train a neural network to assess the oratory skills in a talk through three factors: body pose, facial expressions, and acoustic features.Most previous work on automatic evaluation of oratory skills uses hand-crafted expert annotations for both the quality of the talk and for the identification of predefined actions. Unlike prior art, we measure the quality to be equivalent to the view count of the talk as counted by TED, and allow the network to automatically learn the actions, expressions, and sounds that are relevant to the success of a talk. We find that oratory skills alone contribute substantially to the chances of a talk being successful.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信