基于自适应纠删码的分布式存储系统

B. K. Rai
{"title":"基于自适应纠删码的分布式存储系统","authors":"B. K. Rai","doi":"10.1109/CWIT.2015.7255179","DOIUrl":null,"url":null,"abstract":"Consider the following scenario: A data storage service provider provides an erasure code based distributed storage system (DSS). For the same data, the service provider gives several options: an (n<sub>i</sub>, k<sub>i</sub>) erasure code based DSS for i = 1,2, ..., m. The service provider charges differently for different options (say dollar Pi for an (n<sub>i</sub>, k<sub>i</sub>) erasure code based DSS for the data B of size |B|). A client had initially chosen for an (n<sub>i</sub>, k<sub>i</sub>) erasure code based DSS. At some point of time, the client wants to change for another option, say for an (n<sub>j</sub>, k<sub>j</sub>) erasure code based DSS for the same data, where 1≤ i, j ≤ m, i ≠ j. Thus, service provider would require to convert the (n<sub>i</sub>, k<sub>i</sub>) erasure code based DSS into an (n<sub>j</sub>, k<sub>j</sub>) erasure code based DSS. The service provider has the following problem: How to design an erasure code based DSS so that the conversion of an (n<sub>i</sub>, k<sub>i</sub>) erasure code based DSS into an (n<sub>j</sub>, k<sub>j</sub>) erasure code based DSS, for 1 ≤ i, j ≤ m, i ≠ j, can be done by downloading the minimum amount of data? In this paper, we present an adaptive coding scheme which requires to download the minimum amount of data while converting an (n<sub>i</sub>, k<sub>i</sub>) erasure code based DSS to an (n<sub>j</sub>, k<sub>j</sub>) erasure code based DSS, where 1 ≤ i, j ≤ m, i ≠ j.","PeriodicalId":426245,"journal":{"name":"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)","volume":"3 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive erasure code based distributed storage systems\",\"authors\":\"B. K. Rai\",\"doi\":\"10.1109/CWIT.2015.7255179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the following scenario: A data storage service provider provides an erasure code based distributed storage system (DSS). For the same data, the service provider gives several options: an (n<sub>i</sub>, k<sub>i</sub>) erasure code based DSS for i = 1,2, ..., m. The service provider charges differently for different options (say dollar Pi for an (n<sub>i</sub>, k<sub>i</sub>) erasure code based DSS for the data B of size |B|). A client had initially chosen for an (n<sub>i</sub>, k<sub>i</sub>) erasure code based DSS. At some point of time, the client wants to change for another option, say for an (n<sub>j</sub>, k<sub>j</sub>) erasure code based DSS for the same data, where 1≤ i, j ≤ m, i ≠ j. Thus, service provider would require to convert the (n<sub>i</sub>, k<sub>i</sub>) erasure code based DSS into an (n<sub>j</sub>, k<sub>j</sub>) erasure code based DSS. The service provider has the following problem: How to design an erasure code based DSS so that the conversion of an (n<sub>i</sub>, k<sub>i</sub>) erasure code based DSS into an (n<sub>j</sub>, k<sub>j</sub>) erasure code based DSS, for 1 ≤ i, j ≤ m, i ≠ j, can be done by downloading the minimum amount of data? In this paper, we present an adaptive coding scheme which requires to download the minimum amount of data while converting an (n<sub>i</sub>, k<sub>i</sub>) erasure code based DSS to an (n<sub>j</sub>, k<sub>j</sub>) erasure code based DSS, where 1 ≤ i, j ≤ m, i ≠ j.\",\"PeriodicalId\":426245,\"journal\":{\"name\":\"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)\",\"volume\":\"3 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CWIT.2015.7255179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CWIT.2015.7255179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

请考虑以下场景:某数据存储服务提供商提供了基于erasure code的分布式存储系统。对于相同的数据,服务提供商提供了几个选项:对于i = 1,2,…,基于(ni, ki)擦除码的DSS。服务提供商对不同的选项收取不同的费用(例如,对于大小为b| B|的数据B,基于(ni, ki)擦除码的DSS收取Pi美元)。客户端最初选择了基于(ni, ki)擦除码的DSS。在某个时间点,客户端希望更改为另一个选项,例如为相同数据的基于(nj, kj)擦除码的DSS,其中1≤i, j≤m, i≠j。因此,服务提供商需要将基于(ni, ki)擦除码的DSS转换为基于(nj, kj)擦除码的DSS。服务提供商面临的问题是:如何设计基于擦除码的数据支持系统,使基于(ni, ki)擦除码的数据支持系统在1≤i, j≤m, i≠j的情况下,能够以最小的数据下载量将(nj, kj)擦除码的数据支持系统转换为基于(nj, kj)擦除码的数据支持系统?本文提出了一种将基于(ni, ki)擦除码的DSS转换为基于(nj, kj)擦除码的DSS时需要下载最小数据量的自适应编码方案,其中1≤i, j≤m, i≠j。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive erasure code based distributed storage systems
Consider the following scenario: A data storage service provider provides an erasure code based distributed storage system (DSS). For the same data, the service provider gives several options: an (ni, ki) erasure code based DSS for i = 1,2, ..., m. The service provider charges differently for different options (say dollar Pi for an (ni, ki) erasure code based DSS for the data B of size |B|). A client had initially chosen for an (ni, ki) erasure code based DSS. At some point of time, the client wants to change for another option, say for an (nj, kj) erasure code based DSS for the same data, where 1≤ i, j ≤ m, i ≠ j. Thus, service provider would require to convert the (ni, ki) erasure code based DSS into an (nj, kj) erasure code based DSS. The service provider has the following problem: How to design an erasure code based DSS so that the conversion of an (ni, ki) erasure code based DSS into an (nj, kj) erasure code based DSS, for 1 ≤ i, j ≤ m, i ≠ j, can be done by downloading the minimum amount of data? In this paper, we present an adaptive coding scheme which requires to download the minimum amount of data while converting an (ni, ki) erasure code based DSS to an (nj, kj) erasure code based DSS, where 1 ≤ i, j ≤ m, i ≠ j.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信