基于python的有限体积求解器ANUGA在现代体系结构上的性能分析

Nishant Agrawal, Abhishek Das, Girishchandra R. Yendargaye, T. M. Prabhu, Sandeep K. Joshi, V. V. Shenoi
{"title":"基于python的有限体积求解器ANUGA在现代体系结构上的性能分析","authors":"Nishant Agrawal, Abhishek Das, Girishchandra R. Yendargaye, T. M. Prabhu, Sandeep K. Joshi, V. V. Shenoi","doi":"10.1145/3474124.3474152","DOIUrl":null,"url":null,"abstract":"The performance analysis of ANUGA, a Python-based finite volume solver on the unstructured grid for shallow water model in two dimensions, on recent Intel and AMD processor-based HPC clusters, form the focus of the present study. The analysis uses three datasets with different resolutions of the underlying triangular mesh for discretizing the region of interest. The computational workload depends on the resolution of the grid, which impacts the computation time required for the simulation of the flow. The factors influencing the parallel performance: workload distribution across different processes, and the bulk of the data exchange (the communication overhead), are studied systematically. This paper is an account of the preliminary study to understand the impact of the memory hierarchy (due to the relative sizes of cache) available on different architecture on the performance of this application.","PeriodicalId":144611,"journal":{"name":"2021 Thirteenth International Conference on Contemporary Computing (IC3-2021)","volume":"55 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance Analysis of Python-based Finite Volume Solver ANUGA on Modern Architectures\",\"authors\":\"Nishant Agrawal, Abhishek Das, Girishchandra R. Yendargaye, T. M. Prabhu, Sandeep K. Joshi, V. V. Shenoi\",\"doi\":\"10.1145/3474124.3474152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance analysis of ANUGA, a Python-based finite volume solver on the unstructured grid for shallow water model in two dimensions, on recent Intel and AMD processor-based HPC clusters, form the focus of the present study. The analysis uses three datasets with different resolutions of the underlying triangular mesh for discretizing the region of interest. The computational workload depends on the resolution of the grid, which impacts the computation time required for the simulation of the flow. The factors influencing the parallel performance: workload distribution across different processes, and the bulk of the data exchange (the communication overhead), are studied systematically. This paper is an account of the preliminary study to understand the impact of the memory hierarchy (due to the relative sizes of cache) available on different architecture on the performance of this application.\",\"PeriodicalId\":144611,\"journal\":{\"name\":\"2021 Thirteenth International Conference on Contemporary Computing (IC3-2021)\",\"volume\":\"55 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Thirteenth International Conference on Contemporary Computing (IC3-2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3474124.3474152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Thirteenth International Conference on Contemporary Computing (IC3-2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3474124.3474152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于python的二维非结构化网格浅水模型有限体积求解器ANUGA在基于Intel和AMD处理器的高性能计算集群上的性能分析是本研究的重点。该分析使用三个具有不同分辨率的底层三角形网格的数据集来离散感兴趣的区域。计算量取决于网格的分辨率,这影响了流场模拟所需的计算时间。系统地研究了影响并行性能的因素:不同进程间的工作负载分布和数据交换量(通信开销)。本文介绍了在不同架构上可用的内存层次结构(由于缓存的相对大小)对该应用程序性能的影响的初步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis of Python-based Finite Volume Solver ANUGA on Modern Architectures
The performance analysis of ANUGA, a Python-based finite volume solver on the unstructured grid for shallow water model in two dimensions, on recent Intel and AMD processor-based HPC clusters, form the focus of the present study. The analysis uses three datasets with different resolutions of the underlying triangular mesh for discretizing the region of interest. The computational workload depends on the resolution of the grid, which impacts the computation time required for the simulation of the flow. The factors influencing the parallel performance: workload distribution across different processes, and the bulk of the data exchange (the communication overhead), are studied systematically. This paper is an account of the preliminary study to understand the impact of the memory hierarchy (due to the relative sizes of cache) available on different architecture on the performance of this application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信