从标记特征学习时文本分类中的L1与L2正则化

Sinziana Mazilu, J. Iria
{"title":"从标记特征学习时文本分类中的L1与L2正则化","authors":"Sinziana Mazilu, J. Iria","doi":"10.1109/ICMLA.2011.85","DOIUrl":null,"url":null,"abstract":"In this paper we study the problem of building document classifiers using labeled features and unlabeled documents, where not all the features are helpful for the process of learning. This is an important setting, since building classifiers using labeled words has been recently shown to require considerably less human labeling effort than building classifiers using labeled documents. We propose the use of Generalized Expectation (GE) criteria combined with a L1 regularization term for learning from labeled features. This lets the feature labels guide model expectation constraints, while approaching feature selection from a regularization perspective. We show that GE criteria combined with L1 regularization consistently outperforms -- up to 12% increase in accuracy -- the best previously reported results in the literature under the same setting, obtained using L2 regularization. Furthermore, the results obtained with GE criteria and L1 regularizer are competitive to those obtained in the traditional instance-labeling setting, with the same labeling cost.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"L1 vs. L2 Regularization in Text Classification when Learning from Labeled Features\",\"authors\":\"Sinziana Mazilu, J. Iria\",\"doi\":\"10.1109/ICMLA.2011.85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the problem of building document classifiers using labeled features and unlabeled documents, where not all the features are helpful for the process of learning. This is an important setting, since building classifiers using labeled words has been recently shown to require considerably less human labeling effort than building classifiers using labeled documents. We propose the use of Generalized Expectation (GE) criteria combined with a L1 regularization term for learning from labeled features. This lets the feature labels guide model expectation constraints, while approaching feature selection from a regularization perspective. We show that GE criteria combined with L1 regularization consistently outperforms -- up to 12% increase in accuracy -- the best previously reported results in the literature under the same setting, obtained using L2 regularization. Furthermore, the results obtained with GE criteria and L1 regularizer are competitive to those obtained in the traditional instance-labeling setting, with the same labeling cost.\",\"PeriodicalId\":439926,\"journal\":{\"name\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2011.85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文研究了使用标记特征和未标记特征构建文档分类器的问题,其中并非所有特征都对学习过程有帮助。这是一个重要的设置,因为使用标记的单词构建分类器比使用标记的文档构建分类器需要的人工标记工作要少得多。我们建议使用广义期望(GE)标准结合L1正则化项从标记特征中学习。这让特征标签指导模型期望约束,同时从正则化的角度进行特征选择。我们表明,GE标准与L1正则化相结合,在相同设置下,准确度提高了12%,这是以前文献中报道的使用L2正则化获得的最佳结果。此外,在相同标注成本的情况下,使用GE准则和L1正则化器获得的结果与传统实例标注设置下获得的结果具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
L1 vs. L2 Regularization in Text Classification when Learning from Labeled Features
In this paper we study the problem of building document classifiers using labeled features and unlabeled documents, where not all the features are helpful for the process of learning. This is an important setting, since building classifiers using labeled words has been recently shown to require considerably less human labeling effort than building classifiers using labeled documents. We propose the use of Generalized Expectation (GE) criteria combined with a L1 regularization term for learning from labeled features. This lets the feature labels guide model expectation constraints, while approaching feature selection from a regularization perspective. We show that GE criteria combined with L1 regularization consistently outperforms -- up to 12% increase in accuracy -- the best previously reported results in the literature under the same setting, obtained using L2 regularization. Furthermore, the results obtained with GE criteria and L1 regularizer are competitive to those obtained in the traditional instance-labeling setting, with the same labeling cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信