预测性语义社交媒体分析

D. Ostrowski
{"title":"预测性语义社交媒体分析","authors":"D. Ostrowski","doi":"10.1109/ICSC.2011.16","DOIUrl":null,"url":null,"abstract":"Social networks today represent a substantial amount of shared knowledge and information. To leverage the interdependence of this data, we consider two forms of relational learning to facilitate semantic understanding. First, relational modeling is applied to local networks to reinforce knowledge in each entity. Then, a social dimension approach is applied to generate new (high level) features. These feature sets are then trained towards the identification of learned purchase behaviors (belief system / values) thus supporting a means of prediction. We consider this generation of higher level classifications (termed as social dimensions) to enable increased accuracy in behavior prediction in order to support more focused customer relationships.","PeriodicalId":408382,"journal":{"name":"2011 IEEE Fifth International Conference on Semantic Computing","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Predictive Semantic Social Media Analysis\",\"authors\":\"D. Ostrowski\",\"doi\":\"10.1109/ICSC.2011.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social networks today represent a substantial amount of shared knowledge and information. To leverage the interdependence of this data, we consider two forms of relational learning to facilitate semantic understanding. First, relational modeling is applied to local networks to reinforce knowledge in each entity. Then, a social dimension approach is applied to generate new (high level) features. These feature sets are then trained towards the identification of learned purchase behaviors (belief system / values) thus supporting a means of prediction. We consider this generation of higher level classifications (termed as social dimensions) to enable increased accuracy in behavior prediction in order to support more focused customer relationships.\",\"PeriodicalId\":408382,\"journal\":{\"name\":\"2011 IEEE Fifth International Conference on Semantic Computing\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Fifth International Conference on Semantic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSC.2011.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Fifth International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2011.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

今天的社交网络代表了大量的共享知识和信息。为了利用这些数据的相互依赖性,我们考虑了两种形式的关系学习来促进语义理解。首先,将关系建模应用于局部网络,以增强每个实体中的知识。然后,应用社会维度方法来生成新的(高级)特征。然后对这些特征集进行训练,以识别学习到的购买行为(信念系统/价值观),从而支持一种预测手段。我们认为这一代更高层次的分类(称为社会维度)能够提高行为预测的准确性,从而支持更集中的客户关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive Semantic Social Media Analysis
Social networks today represent a substantial amount of shared knowledge and information. To leverage the interdependence of this data, we consider two forms of relational learning to facilitate semantic understanding. First, relational modeling is applied to local networks to reinforce knowledge in each entity. Then, a social dimension approach is applied to generate new (high level) features. These feature sets are then trained towards the identification of learned purchase behaviors (belief system / values) thus supporting a means of prediction. We consider this generation of higher level classifications (termed as social dimensions) to enable increased accuracy in behavior prediction in order to support more focused customer relationships.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信