{"title":"完全度的伪随机生成器和结构","authors":"Manindra Agrawal","doi":"10.1109/CCC.2002.1004349","DOIUrl":null,"url":null,"abstract":"It is shown that, if there exist sets in E (the exponential complexity class) that require 2/sup /spl Omega/(n)/-sized circuits, then sets that are hard for class P (the polynomial complexity class) and above, under 1-1 reductions, are also hard under 1-1 size-increasing reductions. Under the assumption of the hardness of solving the RSA (Rivest-Shamir-Adleman, 1978) problem or the discrete log problem, it is shown that sets that are hard for class NP (nondeterministic polynomial) and above, under many-1 reductions, are also hard under (non-uniform) 1-1 and size-increasing reductions.","PeriodicalId":193513,"journal":{"name":"Proceedings 17th IEEE Annual Conference on Computational Complexity","volume":"71 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Pseudo-random generators and structure of complete degrees\",\"authors\":\"Manindra Agrawal\",\"doi\":\"10.1109/CCC.2002.1004349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that, if there exist sets in E (the exponential complexity class) that require 2/sup /spl Omega/(n)/-sized circuits, then sets that are hard for class P (the polynomial complexity class) and above, under 1-1 reductions, are also hard under 1-1 size-increasing reductions. Under the assumption of the hardness of solving the RSA (Rivest-Shamir-Adleman, 1978) problem or the discrete log problem, it is shown that sets that are hard for class NP (nondeterministic polynomial) and above, under many-1 reductions, are also hard under (non-uniform) 1-1 and size-increasing reductions.\",\"PeriodicalId\":193513,\"journal\":{\"name\":\"Proceedings 17th IEEE Annual Conference on Computational Complexity\",\"volume\":\"71 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 17th IEEE Annual Conference on Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.2002.1004349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 17th IEEE Annual Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2002.1004349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pseudo-random generators and structure of complete degrees
It is shown that, if there exist sets in E (the exponential complexity class) that require 2/sup /spl Omega/(n)/-sized circuits, then sets that are hard for class P (the polynomial complexity class) and above, under 1-1 reductions, are also hard under 1-1 size-increasing reductions. Under the assumption of the hardness of solving the RSA (Rivest-Shamir-Adleman, 1978) problem or the discrete log problem, it is shown that sets that are hard for class NP (nondeterministic polynomial) and above, under many-1 reductions, are also hard under (non-uniform) 1-1 and size-increasing reductions.