基于VSM的数据空间非结构化数据排序聚类方法

N. Lal, Mrityunjay Singh, S. Pandey, A. Solanki
{"title":"基于VSM的数据空间非结构化数据排序聚类方法","authors":"N. Lal, Mrityunjay Singh, S. Pandey, A. Solanki","doi":"10.1109/ICCSA50381.2020.00024","DOIUrl":null,"url":null,"abstract":"Now a day's huge amount of data is available in an unstructured format, users need useful information related to query or phrase that has been written in search engines. Search engine rank and indexed the data as per the nature of data and documents like structure (SQL data), unstructured (e-books, PPT, text, Streamed Data, songs, movies, research data), or semi-structured (XML). Indexing and ranking is the main issue in Information retrieval system to retrieve the appropriate results of the query from Dataspace due to heterogeneity. Indexing of unstructured data can reduce the processing time of query for fast retrieval of data. This paper proposed a ranked cluster approach using Modified cosine similarity and Vector space model (VSM) which may be replaced with the traditional cosine similarity approach for better results on the dataset. Here we applying the vector space model, Document term matrix, and TF-IDF weights for indexing and ranking of the heterogeneous data. Consequently, the documents which match the query the most are displayed first and ranking of the documents is done according to similarity with the query of unstructured data over Dataspace.","PeriodicalId":124171,"journal":{"name":"2020 20th International Conference on Computational Science and Its Applications (ICCSA)","volume":"20 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Proposed Ranked Clustering Approach for Unstructured Data from Dataspace using VSM\",\"authors\":\"N. Lal, Mrityunjay Singh, S. Pandey, A. Solanki\",\"doi\":\"10.1109/ICCSA50381.2020.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Now a day's huge amount of data is available in an unstructured format, users need useful information related to query or phrase that has been written in search engines. Search engine rank and indexed the data as per the nature of data and documents like structure (SQL data), unstructured (e-books, PPT, text, Streamed Data, songs, movies, research data), or semi-structured (XML). Indexing and ranking is the main issue in Information retrieval system to retrieve the appropriate results of the query from Dataspace due to heterogeneity. Indexing of unstructured data can reduce the processing time of query for fast retrieval of data. This paper proposed a ranked cluster approach using Modified cosine similarity and Vector space model (VSM) which may be replaced with the traditional cosine similarity approach for better results on the dataset. Here we applying the vector space model, Document term matrix, and TF-IDF weights for indexing and ranking of the heterogeneous data. Consequently, the documents which match the query the most are displayed first and ranking of the documents is done according to similarity with the query of unstructured data over Dataspace.\",\"PeriodicalId\":124171,\"journal\":{\"name\":\"2020 20th International Conference on Computational Science and Its Applications (ICCSA)\",\"volume\":\"20 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 20th International Conference on Computational Science and Its Applications (ICCSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSA50381.2020.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 20th International Conference on Computational Science and Its Applications (ICCSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSA50381.2020.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

如今,每天的海量数据都是以非结构化格式提供的,用户需要与搜索引擎中已写入的查询或短语相关的有用信息。搜索引擎根据数据和文档的性质对数据进行排序和索引,如结构化(SQL数据)、非结构化(电子书、PPT、文本、流数据、歌曲、电影、研究数据)或半结构化(XML)。在信息检索系统中,由于数据空间的异构性,如何从数据空间中检索到合适的查询结果是一个重要的问题。对非结构化数据建立索引可以减少查询的处理时间,实现数据的快速检索。本文提出了一种基于修正余弦相似度和向量空间模型(VSM)的排序聚类方法,该方法可以取代传统的余弦相似度方法,在数据集上获得更好的结果。在这里,我们应用向量空间模型、文档术语矩阵和TF-IDF权重对异构数据进行索引和排序。因此,首先显示与查询最匹配的文档,并根据与Dataspace上的非结构化数据查询的相似度对文档进行排序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Proposed Ranked Clustering Approach for Unstructured Data from Dataspace using VSM
Now a day's huge amount of data is available in an unstructured format, users need useful information related to query or phrase that has been written in search engines. Search engine rank and indexed the data as per the nature of data and documents like structure (SQL data), unstructured (e-books, PPT, text, Streamed Data, songs, movies, research data), or semi-structured (XML). Indexing and ranking is the main issue in Information retrieval system to retrieve the appropriate results of the query from Dataspace due to heterogeneity. Indexing of unstructured data can reduce the processing time of query for fast retrieval of data. This paper proposed a ranked cluster approach using Modified cosine similarity and Vector space model (VSM) which may be replaced with the traditional cosine similarity approach for better results on the dataset. Here we applying the vector space model, Document term matrix, and TF-IDF weights for indexing and ranking of the heterogeneous data. Consequently, the documents which match the query the most are displayed first and ranking of the documents is done according to similarity with the query of unstructured data over Dataspace.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信