异常网络流量的自主诊断

Angelos K. Marnerides, D. Hutchison, D. Pezaros
{"title":"异常网络流量的自主诊断","authors":"Angelos K. Marnerides, D. Hutchison, D. Pezaros","doi":"10.1109/WOWMOM.2010.5534933","DOIUrl":null,"url":null,"abstract":"Network traffic abnormalities pose one of the greatest threats for networked environments. Autonomic communications offer a solution: it should be possible to design network mechanisms that behave adaptively and respond to any anomalous phenomenon that threatens normal network behaviour. In this paper we present the design of an adaptive anomaly detection component that has been built as part of an autonomic network system. We have implemented an entropy estimator to predict the onset of anomalous traffic behaviour within an autonomic resilience framework, and a Supervised Naive Bayesian classifier which synergistically empower the core properties of self-adaptation, self-learning and self-protection for next generation networks. Being part of an always-on, automated measurement and control infrastructure, such mechanism enforces the adaptive system reaction to suboptimal network operation and its subsequent restoration, while requiring minimal static (re)configuration and operator intervention.","PeriodicalId":384628,"journal":{"name":"2010 IEEE International Symposium on \"A World of Wireless, Mobile and Multimedia Networks\" (WoWMoM)","volume":"17 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Autonomic diagnosis of anomalous network traffic\",\"authors\":\"Angelos K. Marnerides, D. Hutchison, D. Pezaros\",\"doi\":\"10.1109/WOWMOM.2010.5534933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network traffic abnormalities pose one of the greatest threats for networked environments. Autonomic communications offer a solution: it should be possible to design network mechanisms that behave adaptively and respond to any anomalous phenomenon that threatens normal network behaviour. In this paper we present the design of an adaptive anomaly detection component that has been built as part of an autonomic network system. We have implemented an entropy estimator to predict the onset of anomalous traffic behaviour within an autonomic resilience framework, and a Supervised Naive Bayesian classifier which synergistically empower the core properties of self-adaptation, self-learning and self-protection for next generation networks. Being part of an always-on, automated measurement and control infrastructure, such mechanism enforces the adaptive system reaction to suboptimal network operation and its subsequent restoration, while requiring minimal static (re)configuration and operator intervention.\",\"PeriodicalId\":384628,\"journal\":{\"name\":\"2010 IEEE International Symposium on \\\"A World of Wireless, Mobile and Multimedia Networks\\\" (WoWMoM)\",\"volume\":\"17 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on \\\"A World of Wireless, Mobile and Multimedia Networks\\\" (WoWMoM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOWMOM.2010.5534933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on \"A World of Wireless, Mobile and Multimedia Networks\" (WoWMoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOWMOM.2010.5534933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

网络流量异常是网络环境面临的最大威胁之一。自主通信提供了一个解决方案:应该有可能设计出自适应行为的网络机制,并对任何威胁正常网络行为的异常现象做出反应。在本文中,我们提出了一种自适应异常检测组件的设计,该组件已被构建为自治网络系统的一部分。我们已经实现了一个熵估计器来预测自主弹性框架内异常流量行为的开始,以及一个监督朴素贝叶斯分类器,它协同增强了下一代网络的自适应、自学习和自我保护的核心特性。作为始终在线的自动化测量和控制基础设施的一部分,这种机制强制自适应系统对次优网络运行及其随后的恢复做出反应,同时需要最小的静态(重新)配置和操作员干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autonomic diagnosis of anomalous network traffic
Network traffic abnormalities pose one of the greatest threats for networked environments. Autonomic communications offer a solution: it should be possible to design network mechanisms that behave adaptively and respond to any anomalous phenomenon that threatens normal network behaviour. In this paper we present the design of an adaptive anomaly detection component that has been built as part of an autonomic network system. We have implemented an entropy estimator to predict the onset of anomalous traffic behaviour within an autonomic resilience framework, and a Supervised Naive Bayesian classifier which synergistically empower the core properties of self-adaptation, self-learning and self-protection for next generation networks. Being part of an always-on, automated measurement and control infrastructure, such mechanism enforces the adaptive system reaction to suboptimal network operation and its subsequent restoration, while requiring minimal static (re)configuration and operator intervention.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信