K. Sanjeevaiah, T. S. Reddy, S. Karthik, Mahesh Kumar, D. Vivek
{"title":"基于内容的图像检索,基于混合Densenet121-Bilstm和Harris Hawks优化算法","authors":"K. Sanjeevaiah, T. S. Reddy, S. Karthik, Mahesh Kumar, D. Vivek","doi":"10.4018/ijsi.315661","DOIUrl":null,"url":null,"abstract":"In the field of digital data management, content-based image retrieval (CBIR) has become one of the most important research areas, and it is used in many fields. This system searches a database of images to retrieve most visually comparable photos to a query image. It is based on features derived directly from the image data, rather than on keywords or annotations. Currently, deep learning approaches have demonstrated a strong interest in picture recognition, particularly in extracting information about the features of the image. Therefore, a Densenet-121 is employed in this work to extract high-level and deep characteristics from the images. Afterwards, the training images are retrieved from the dataset and compared to the query image using a Bidirectional LSTM (BiLSTM) classifier to obtain the relevant images. The investigations are conducted using a publicly available dataset named Corel, and the f-measure, recall, and precision metrics are used for performance assessment. Investigation outcomes show that the proposed technique outperforms the existing image retrieval techniques.","PeriodicalId":396598,"journal":{"name":"Int. J. Softw. Innov.","volume":"41 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Content-Based Image Retrieval Using Hybrid Densenet121-Bilstm and Harris Hawks Optimization Algorithm\",\"authors\":\"K. Sanjeevaiah, T. S. Reddy, S. Karthik, Mahesh Kumar, D. Vivek\",\"doi\":\"10.4018/ijsi.315661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of digital data management, content-based image retrieval (CBIR) has become one of the most important research areas, and it is used in many fields. This system searches a database of images to retrieve most visually comparable photos to a query image. It is based on features derived directly from the image data, rather than on keywords or annotations. Currently, deep learning approaches have demonstrated a strong interest in picture recognition, particularly in extracting information about the features of the image. Therefore, a Densenet-121 is employed in this work to extract high-level and deep characteristics from the images. Afterwards, the training images are retrieved from the dataset and compared to the query image using a Bidirectional LSTM (BiLSTM) classifier to obtain the relevant images. The investigations are conducted using a publicly available dataset named Corel, and the f-measure, recall, and precision metrics are used for performance assessment. Investigation outcomes show that the proposed technique outperforms the existing image retrieval techniques.\",\"PeriodicalId\":396598,\"journal\":{\"name\":\"Int. J. Softw. Innov.\",\"volume\":\"41 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Softw. Innov.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijsi.315661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Softw. Innov.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsi.315661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Content-Based Image Retrieval Using Hybrid Densenet121-Bilstm and Harris Hawks Optimization Algorithm
In the field of digital data management, content-based image retrieval (CBIR) has become one of the most important research areas, and it is used in many fields. This system searches a database of images to retrieve most visually comparable photos to a query image. It is based on features derived directly from the image data, rather than on keywords or annotations. Currently, deep learning approaches have demonstrated a strong interest in picture recognition, particularly in extracting information about the features of the image. Therefore, a Densenet-121 is employed in this work to extract high-level and deep characteristics from the images. Afterwards, the training images are retrieved from the dataset and compared to the query image using a Bidirectional LSTM (BiLSTM) classifier to obtain the relevant images. The investigations are conducted using a publicly available dataset named Corel, and the f-measure, recall, and precision metrics are used for performance assessment. Investigation outcomes show that the proposed technique outperforms the existing image retrieval techniques.