优化模拟系统

G. Pflug
{"title":"优化模拟系统","authors":"G. Pflug","doi":"10.1145/1102955.1102956","DOIUrl":null,"url":null,"abstract":"A major part of all simulation models contains a number of decision variables. For such models the problem of optimal decision arises in a natural way. The combination of simulation and optimization for probabilistic models with continuous decision variables is discussed in this paper. Several important techniques for solving the combined problem are presented. In particular the stochastic quasigradient method which is a well known technique in stochastic optimization may also successfully applied for simulation-optimization problems.","PeriodicalId":138785,"journal":{"name":"ACM Sigsim Simulation Digest","volume":"169 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1984-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Optimizing simulated systems\",\"authors\":\"G. Pflug\",\"doi\":\"10.1145/1102955.1102956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A major part of all simulation models contains a number of decision variables. For such models the problem of optimal decision arises in a natural way. The combination of simulation and optimization for probabilistic models with continuous decision variables is discussed in this paper. Several important techniques for solving the combined problem are presented. In particular the stochastic quasigradient method which is a well known technique in stochastic optimization may also successfully applied for simulation-optimization problems.\",\"PeriodicalId\":138785,\"journal\":{\"name\":\"ACM Sigsim Simulation Digest\",\"volume\":\"169 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1984-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Sigsim Simulation Digest\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1102955.1102956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Sigsim Simulation Digest","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1102955.1102956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

所有仿真模型的主要部分都包含许多决策变量。对于这样的模型,最优决策的问题自然出现。讨论了具有连续决策变量的概率模型的仿真与优化相结合的问题。提出了解决组合问题的几种重要技术。特别是随机拟梯度法这一在随机优化中非常有名的方法,也可以成功地应用于模拟优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing simulated systems
A major part of all simulation models contains a number of decision variables. For such models the problem of optimal decision arises in a natural way. The combination of simulation and optimization for probabilistic models with continuous decision variables is discussed in this paper. Several important techniques for solving the combined problem are presented. In particular the stochastic quasigradient method which is a well known technique in stochastic optimization may also successfully applied for simulation-optimization problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信