{"title":"多值逻辑函数的规范表示","authors":"T.A. Giuma, M. Tapia","doi":"10.1109/SECON.1992.202345","DOIUrl":null,"url":null,"abstract":"The authors discuss multivalued logic functions. They introduce a multivalued algebraic structure, define its properties, consider the multivalued logic function and its base, and the different canonical representations and decompositions of a multivalued logic function. The decompositions of multivalued logic functions will facilitate the derivations of test vectors for multivalued logic combinational networks.<<ETX>>","PeriodicalId":230446,"journal":{"name":"Proceedings IEEE Southeastcon '92","volume":"11 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Canonical representation of multivalued logic functions\",\"authors\":\"T.A. Giuma, M. Tapia\",\"doi\":\"10.1109/SECON.1992.202345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors discuss multivalued logic functions. They introduce a multivalued algebraic structure, define its properties, consider the multivalued logic function and its base, and the different canonical representations and decompositions of a multivalued logic function. The decompositions of multivalued logic functions will facilitate the derivations of test vectors for multivalued logic combinational networks.<<ETX>>\",\"PeriodicalId\":230446,\"journal\":{\"name\":\"Proceedings IEEE Southeastcon '92\",\"volume\":\"11 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE Southeastcon '92\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.1992.202345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Southeastcon '92","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.1992.202345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Canonical representation of multivalued logic functions
The authors discuss multivalued logic functions. They introduce a multivalued algebraic structure, define its properties, consider the multivalued logic function and its base, and the different canonical representations and decompositions of a multivalued logic function. The decompositions of multivalued logic functions will facilitate the derivations of test vectors for multivalued logic combinational networks.<>