{"title":"基于负载均衡理论的快闪存储器调制码","authors":"Fan Zhang, H. Pfister","doi":"10.1109/ALLERTON.2009.5394880","DOIUrl":null,"url":null,"abstract":"In this paper, we consider modulation codes for practical multilevel flash memory storage systems with q cell levels. Instead of maximizing the lifetime of the device [7], [1], [2], [4], we maximize the average amount of information stored per cell-level, which is defined as storage efficiency. Using this framework, we show that the worst-case criterion [7], [1], [2] and the average-case criterion [4] are two extreme cases of our objective function. A self-randomized modulation code is proposed which is asymptotically optimal, as q → ∞, for an arbitrary input alphabet and i.i.d. input distribution. In practical flash memory systems, the number of cell-levels q is only moderately large. So the asymptotic performance as q → ∞ may not tell the whole story. Using the tools from load-balancing theory, we analyze the storage efficiency of the self-randomized modulation code. The result shows that only a fraction of the cells are utilized when the number of cell-levels q is only moderately large. We also propose a load-balancing modulation code, based on a phenomenon known as “the power of two random choices” [10], to improve the storage efficiency of practical systems. Theoretical analysis and simulation results show that our load-balancing modulation codes can provide significant gain to practical flash memory storage systems. Though pseudo-random, our approach achieves the same load-balancing performance, for i.i.d. inputs, as a purely random approach based on the power of two random choices.","PeriodicalId":440015,"journal":{"name":"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"7 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modulation codes for flash memory based on load-balancing theory\",\"authors\":\"Fan Zhang, H. Pfister\",\"doi\":\"10.1109/ALLERTON.2009.5394880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider modulation codes for practical multilevel flash memory storage systems with q cell levels. Instead of maximizing the lifetime of the device [7], [1], [2], [4], we maximize the average amount of information stored per cell-level, which is defined as storage efficiency. Using this framework, we show that the worst-case criterion [7], [1], [2] and the average-case criterion [4] are two extreme cases of our objective function. A self-randomized modulation code is proposed which is asymptotically optimal, as q → ∞, for an arbitrary input alphabet and i.i.d. input distribution. In practical flash memory systems, the number of cell-levels q is only moderately large. So the asymptotic performance as q → ∞ may not tell the whole story. Using the tools from load-balancing theory, we analyze the storage efficiency of the self-randomized modulation code. The result shows that only a fraction of the cells are utilized when the number of cell-levels q is only moderately large. We also propose a load-balancing modulation code, based on a phenomenon known as “the power of two random choices” [10], to improve the storage efficiency of practical systems. Theoretical analysis and simulation results show that our load-balancing modulation codes can provide significant gain to practical flash memory storage systems. Though pseudo-random, our approach achieves the same load-balancing performance, for i.i.d. inputs, as a purely random approach based on the power of two random choices.\",\"PeriodicalId\":440015,\"journal\":{\"name\":\"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"7 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2009.5394880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2009.5394880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modulation codes for flash memory based on load-balancing theory
In this paper, we consider modulation codes for practical multilevel flash memory storage systems with q cell levels. Instead of maximizing the lifetime of the device [7], [1], [2], [4], we maximize the average amount of information stored per cell-level, which is defined as storage efficiency. Using this framework, we show that the worst-case criterion [7], [1], [2] and the average-case criterion [4] are two extreme cases of our objective function. A self-randomized modulation code is proposed which is asymptotically optimal, as q → ∞, for an arbitrary input alphabet and i.i.d. input distribution. In practical flash memory systems, the number of cell-levels q is only moderately large. So the asymptotic performance as q → ∞ may not tell the whole story. Using the tools from load-balancing theory, we analyze the storage efficiency of the self-randomized modulation code. The result shows that only a fraction of the cells are utilized when the number of cell-levels q is only moderately large. We also propose a load-balancing modulation code, based on a phenomenon known as “the power of two random choices” [10], to improve the storage efficiency of practical systems. Theoretical analysis and simulation results show that our load-balancing modulation codes can provide significant gain to practical flash memory storage systems. Though pseudo-random, our approach achieves the same load-balancing performance, for i.i.d. inputs, as a purely random approach based on the power of two random choices.