渐进式学习的结构知识组织与迁移

Yu Liu, Xiaopeng Hong, Xiaoyu Tao, Songlin Dong, Jingang Shi, Yihong Gong
{"title":"渐进式学习的结构知识组织与迁移","authors":"Yu Liu, Xiaopeng Hong, Xiaoyu Tao, Songlin Dong, Jingang Shi, Yihong Gong","doi":"10.1145/3469877.3490598","DOIUrl":null,"url":null,"abstract":"Deep models are vulnerable to catastrophic forgetting when fine-tuned on new data. Popular distillation-based methods usually neglect the relations between data samples and may eventually forget essential structural knowledge. To solve these shortcomings, we propose a structural graph knowledge distillation based incremental learning framework to preserve both the positions of samples and their relations. Firstly, a memory knowledge graph (MKG) is generated to fully characterize the structural knowledge of historical tasks. Secondly, we develop a graph interpolation mechanism to enrich the domain of knowledge and alleviate the inter-class sample imbalance issue. Thirdly, we introduce structural graph knowledge distillation to transfer the knowledge of historical tasks. Comprehensive experiments on three datasets validate the proposed method.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Structural Knowledge Organization and Transfer for Class-Incremental Learning\",\"authors\":\"Yu Liu, Xiaopeng Hong, Xiaoyu Tao, Songlin Dong, Jingang Shi, Yihong Gong\",\"doi\":\"10.1145/3469877.3490598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep models are vulnerable to catastrophic forgetting when fine-tuned on new data. Popular distillation-based methods usually neglect the relations between data samples and may eventually forget essential structural knowledge. To solve these shortcomings, we propose a structural graph knowledge distillation based incremental learning framework to preserve both the positions of samples and their relations. Firstly, a memory knowledge graph (MKG) is generated to fully characterize the structural knowledge of historical tasks. Secondly, we develop a graph interpolation mechanism to enrich the domain of knowledge and alleviate the inter-class sample imbalance issue. Thirdly, we introduce structural graph knowledge distillation to transfer the knowledge of historical tasks. Comprehensive experiments on three datasets validate the proposed method.\",\"PeriodicalId\":210974,\"journal\":{\"name\":\"ACM Multimedia Asia\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Multimedia Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469877.3490598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3490598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

当对新数据进行微调时,深度模型很容易发生灾难性的遗忘。流行的基于蒸馏的方法通常忽略了数据样本之间的关系,最终可能会忘记基本的结构知识。为了解决这些问题,我们提出了一种基于结构图知识蒸馏的增量学习框架,以保留样本的位置和它们之间的关系。首先,生成记忆知识图(memory knowledge graph, MKG),充分表征历史任务的结构知识;其次,我们开发一个图形内插机制,丰富的领域知识和减轻类的样本不平衡问题。第三,引入结构图知识精馏,实现历史任务知识的转移。在三个数据集上的综合实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural Knowledge Organization and Transfer for Class-Incremental Learning
Deep models are vulnerable to catastrophic forgetting when fine-tuned on new data. Popular distillation-based methods usually neglect the relations between data samples and may eventually forget essential structural knowledge. To solve these shortcomings, we propose a structural graph knowledge distillation based incremental learning framework to preserve both the positions of samples and their relations. Firstly, a memory knowledge graph (MKG) is generated to fully characterize the structural knowledge of historical tasks. Secondly, we develop a graph interpolation mechanism to enrich the domain of knowledge and alleviate the inter-class sample imbalance issue. Thirdly, we introduce structural graph knowledge distillation to transfer the knowledge of historical tasks. Comprehensive experiments on three datasets validate the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信