{"title":"EDA在暗硅时代的挑战","authors":"M. Shafique, S. Garg, J. Henkel, Diana Marculescu","doi":"10.1145/2593069.2593229","DOIUrl":null,"url":null,"abstract":"Technology scaling has resulted in smaller and faster transistors in successive technology generations. However, transistor power consumption no longer scales commensurately with integration density and, consequently, it is projected that in future technology nodes it will only be possible to simultaneously power on a fraction of cores on a multi-core chip in order to stay within the power budget. The part of the chip that is powered off is referred to as dark silicon and brings new challenges as well as opportunities for the design community, particularly in the context of the interaction of dark silicon with thermal, reliability and variability concerns. In this perspectives paper we describe these new challenges and opportunities, and provide preliminary experimental evidence in their support.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"16 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"197","resultStr":"{\"title\":\"The EDA challenges in the dark silicon era\",\"authors\":\"M. Shafique, S. Garg, J. Henkel, Diana Marculescu\",\"doi\":\"10.1145/2593069.2593229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Technology scaling has resulted in smaller and faster transistors in successive technology generations. However, transistor power consumption no longer scales commensurately with integration density and, consequently, it is projected that in future technology nodes it will only be possible to simultaneously power on a fraction of cores on a multi-core chip in order to stay within the power budget. The part of the chip that is powered off is referred to as dark silicon and brings new challenges as well as opportunities for the design community, particularly in the context of the interaction of dark silicon with thermal, reliability and variability concerns. In this perspectives paper we describe these new challenges and opportunities, and provide preliminary experimental evidence in their support.\",\"PeriodicalId\":433816,\"journal\":{\"name\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"16 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"197\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2593069.2593229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593069.2593229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Technology scaling has resulted in smaller and faster transistors in successive technology generations. However, transistor power consumption no longer scales commensurately with integration density and, consequently, it is projected that in future technology nodes it will only be possible to simultaneously power on a fraction of cores on a multi-core chip in order to stay within the power budget. The part of the chip that is powered off is referred to as dark silicon and brings new challenges as well as opportunities for the design community, particularly in the context of the interaction of dark silicon with thermal, reliability and variability concerns. In this perspectives paper we describe these new challenges and opportunities, and provide preliminary experimental evidence in their support.