基于mdl的快速多样性汇总方法

N. Vanetik, Marina Litvak
{"title":"基于mdl的快速多样性汇总方法","authors":"N. Vanetik, Marina Litvak","doi":"10.1109/WI.2018.00-17","DOIUrl":null,"url":null,"abstract":"Automated text summarization extracts essential information from original text and presents it in a predefined number of words. In this paper, we introduce an unsupervised extractive summarization approach that takes its roots from the SLIM dataset compression algorithm [1] based on the Minimum Description Length (MDL) principle [2], [3]. Our approach represents text as a transactional dataset, where sentences are transactions and normalized words are items. We use the SLIM algorithm (SLIM is not an abbreviation, it is Dutch word for 'smart') to solve the main bottleneck of the MDL computation, which is the generation of all frequent itemsets as a first step of the model construction. Additionally, we add a diversity constraint to the model in order to decrease appearance of repeated information in a summary. We introduce DRIM (Diversed SLIM) algorithm that performs unsupervised summarization, both generic and query-based, and does not require parameter tuning. We evaluate our summarizer on texts in English, but it can be easily extended to other languages.","PeriodicalId":405966,"journal":{"name":"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"21 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DRIM: MDL-Based Approach for Fast Diverse Summarization\",\"authors\":\"N. Vanetik, Marina Litvak\",\"doi\":\"10.1109/WI.2018.00-17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated text summarization extracts essential information from original text and presents it in a predefined number of words. In this paper, we introduce an unsupervised extractive summarization approach that takes its roots from the SLIM dataset compression algorithm [1] based on the Minimum Description Length (MDL) principle [2], [3]. Our approach represents text as a transactional dataset, where sentences are transactions and normalized words are items. We use the SLIM algorithm (SLIM is not an abbreviation, it is Dutch word for 'smart') to solve the main bottleneck of the MDL computation, which is the generation of all frequent itemsets as a first step of the model construction. Additionally, we add a diversity constraint to the model in order to decrease appearance of repeated information in a summary. We introduce DRIM (Diversed SLIM) algorithm that performs unsupervised summarization, both generic and query-based, and does not require parameter tuning. We evaluate our summarizer on texts in English, but it can be easily extended to other languages.\",\"PeriodicalId\":405966,\"journal\":{\"name\":\"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"volume\":\"21 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2018.00-17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2018.00-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自动文本摘要从原始文本中提取重要信息,并以预定义的单词数表示。在本文中,我们引入了一种无监督提取摘要方法,该方法源于基于最小描述长度(MDL)原则的SLIM数据集压缩算法[1][2],[3]。我们的方法将文本表示为事务性数据集,其中句子是事务,规范化单词是项。我们使用SLIM算法(SLIM不是缩写,它是荷兰语“smart”的缩写)来解决MDL计算的主要瓶颈,即作为模型构建的第一步生成所有频繁项集。此外,我们在模型中添加了多样性约束,以减少摘要中重复信息的出现。我们介绍了DRIM (diversity SLIM)算法,该算法执行无监督摘要,包括通用的和基于查询的,并且不需要参数调优。我们对英语文本的摘要进行评估,但它可以很容易地扩展到其他语言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DRIM: MDL-Based Approach for Fast Diverse Summarization
Automated text summarization extracts essential information from original text and presents it in a predefined number of words. In this paper, we introduce an unsupervised extractive summarization approach that takes its roots from the SLIM dataset compression algorithm [1] based on the Minimum Description Length (MDL) principle [2], [3]. Our approach represents text as a transactional dataset, where sentences are transactions and normalized words are items. We use the SLIM algorithm (SLIM is not an abbreviation, it is Dutch word for 'smart') to solve the main bottleneck of the MDL computation, which is the generation of all frequent itemsets as a first step of the model construction. Additionally, we add a diversity constraint to the model in order to decrease appearance of repeated information in a summary. We introduce DRIM (Diversed SLIM) algorithm that performs unsupervised summarization, both generic and query-based, and does not require parameter tuning. We evaluate our summarizer on texts in English, but it can be easily extended to other languages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信