{"title":"基于关节映射策略的高效骨骼动作识别","authors":"Min-Seok Kang, Dongoh Kang, Hansaem Kim","doi":"10.1109/WACV56688.2023.00340","DOIUrl":null,"url":null,"abstract":"Graph convolutional networks (GCNs) have brought remarkable progress in skeleton-based action recognition. However, high computational cost and large model size make models difficult to be applied in real-world embedded system. Specifically, GCN that is applied in automated surveillance system pre-require models such as pedestrian detection and human pose estimation. Therefore, each model should be computationally lightweight and whole process should be operated in real-time. In this paper, we propose two different joint-mapping modules to reduce the number of joint representations, alleviating a total computational cost and model size. Our models achieve better accuracy-latency trade-off compared to previous state-ofthe-arts on two datasets, namely NTU RGB+D and NTU RGB+D 120, demonstrating the suitability for practical applications. Furthermore, we measure the latency of the models by using TensorRT framework to compare the models from a practical perspective.","PeriodicalId":270631,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficient Skeleton-Based Action Recognition via Joint-Mapping strategies\",\"authors\":\"Min-Seok Kang, Dongoh Kang, Hansaem Kim\",\"doi\":\"10.1109/WACV56688.2023.00340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph convolutional networks (GCNs) have brought remarkable progress in skeleton-based action recognition. However, high computational cost and large model size make models difficult to be applied in real-world embedded system. Specifically, GCN that is applied in automated surveillance system pre-require models such as pedestrian detection and human pose estimation. Therefore, each model should be computationally lightweight and whole process should be operated in real-time. In this paper, we propose two different joint-mapping modules to reduce the number of joint representations, alleviating a total computational cost and model size. Our models achieve better accuracy-latency trade-off compared to previous state-ofthe-arts on two datasets, namely NTU RGB+D and NTU RGB+D 120, demonstrating the suitability for practical applications. Furthermore, we measure the latency of the models by using TensorRT framework to compare the models from a practical perspective.\",\"PeriodicalId\":270631,\"journal\":{\"name\":\"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV56688.2023.00340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV56688.2023.00340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Skeleton-Based Action Recognition via Joint-Mapping strategies
Graph convolutional networks (GCNs) have brought remarkable progress in skeleton-based action recognition. However, high computational cost and large model size make models difficult to be applied in real-world embedded system. Specifically, GCN that is applied in automated surveillance system pre-require models such as pedestrian detection and human pose estimation. Therefore, each model should be computationally lightweight and whole process should be operated in real-time. In this paper, we propose two different joint-mapping modules to reduce the number of joint representations, alleviating a total computational cost and model size. Our models achieve better accuracy-latency trade-off compared to previous state-ofthe-arts on two datasets, namely NTU RGB+D and NTU RGB+D 120, demonstrating the suitability for practical applications. Furthermore, we measure the latency of the models by using TensorRT framework to compare the models from a practical perspective.