{"title":"使用顺序观察的分布式信念平均","authors":"Yang Liu, Ji Liu, T. Başar, M. Liu","doi":"10.23919/ACC.2017.7963031","DOIUrl":null,"url":null,"abstract":"This paper considers a distributed belief averaging problem with sequential observations in which a group of n > 1 agents in a network, each having sequentially arriving samples of its belief in an online manner, aim to reach a consensus at the average of their beliefs, by exchanging information only with their neighbors. The neighbor relationships among the n agents are described by a time-varying undirected graph whose vertices correspond to agents and whose edges depict neighbor relationships. A distributed algorithm is proposed to solve this problem over sequential observations with O(1/t) convergence rate. Extensions to the case of directed graphs are also detailed.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"33 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Distributed belief averaging using sequential observations\",\"authors\":\"Yang Liu, Ji Liu, T. Başar, M. Liu\",\"doi\":\"10.23919/ACC.2017.7963031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers a distributed belief averaging problem with sequential observations in which a group of n > 1 agents in a network, each having sequentially arriving samples of its belief in an online manner, aim to reach a consensus at the average of their beliefs, by exchanging information only with their neighbors. The neighbor relationships among the n agents are described by a time-varying undirected graph whose vertices correspond to agents and whose edges depict neighbor relationships. A distributed algorithm is proposed to solve this problem over sequential observations with O(1/t) convergence rate. Extensions to the case of directed graphs are also detailed.\",\"PeriodicalId\":422926,\"journal\":{\"name\":\"2017 American Control Conference (ACC)\",\"volume\":\"33 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.2017.7963031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distributed belief averaging using sequential observations
This paper considers a distributed belief averaging problem with sequential observations in which a group of n > 1 agents in a network, each having sequentially arriving samples of its belief in an online manner, aim to reach a consensus at the average of their beliefs, by exchanging information only with their neighbors. The neighbor relationships among the n agents are described by a time-varying undirected graph whose vertices correspond to agents and whose edges depict neighbor relationships. A distributed algorithm is proposed to solve this problem over sequential observations with O(1/t) convergence rate. Extensions to the case of directed graphs are also detailed.