基于SVR的近红外光谱无创血糖估计

Yue Zhang, Ziliang Wang
{"title":"基于SVR的近红外光谱无创血糖估计","authors":"Yue Zhang, Ziliang Wang","doi":"10.1109/ITOEC.2017.8122366","DOIUrl":null,"url":null,"abstract":"There is a nonlinear relation between the blood glucose and photoplethysmography(PPG) signal. In order to estimate the blood glucose from the photoplethysmography signal, this paper presents a non-invasive blood glucose estimation using Near-Infrared spectroscopy based on the Support Vector Regression(SVR). The wavelet transform algorithm is used to remove baseline drift and smooth signals. 22 parameters, including features obtained from PPG signal and some physiological and environmental parameters, are the input parameters of Support Vector Regression model. The comparison between estimated and reference values shows better accuracy than the multiple linear regression analysis method, partial least squares method.","PeriodicalId":214296,"journal":{"name":"2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC)","volume":"16 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Non-invasive blood glucose estimation using Near-Infrared spectroscopy based on SVR\",\"authors\":\"Yue Zhang, Ziliang Wang\",\"doi\":\"10.1109/ITOEC.2017.8122366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a nonlinear relation between the blood glucose and photoplethysmography(PPG) signal. In order to estimate the blood glucose from the photoplethysmography signal, this paper presents a non-invasive blood glucose estimation using Near-Infrared spectroscopy based on the Support Vector Regression(SVR). The wavelet transform algorithm is used to remove baseline drift and smooth signals. 22 parameters, including features obtained from PPG signal and some physiological and environmental parameters, are the input parameters of Support Vector Regression model. The comparison between estimated and reference values shows better accuracy than the multiple linear regression analysis method, partial least squares method.\",\"PeriodicalId\":214296,\"journal\":{\"name\":\"2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC)\",\"volume\":\"16 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITOEC.2017.8122366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITOEC.2017.8122366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

血糖与光容积脉搏波(PPG)信号之间存在非线性关系。为了从光容积脉搏波信号中估计血糖,本文提出了一种基于支持向量回归(SVR)的近红外光谱无创血糖估计方法。采用小波变换算法去除基线漂移和平滑信号。22个参数,包括从PPG信号中获得的特征和一些生理和环境参数,作为支持向量回归模型的输入参数。估计值与参考值的比较表明,与多元线性回归分析方法、偏最小二乘法相比,精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-invasive blood glucose estimation using Near-Infrared spectroscopy based on SVR
There is a nonlinear relation between the blood glucose and photoplethysmography(PPG) signal. In order to estimate the blood glucose from the photoplethysmography signal, this paper presents a non-invasive blood glucose estimation using Near-Infrared spectroscopy based on the Support Vector Regression(SVR). The wavelet transform algorithm is used to remove baseline drift and smooth signals. 22 parameters, including features obtained from PPG signal and some physiological and environmental parameters, are the input parameters of Support Vector Regression model. The comparison between estimated and reference values shows better accuracy than the multiple linear regression analysis method, partial least squares method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信