使用流行模式发现电子健康记录数据仓库中未映射的流程图数据

A. Bokov, Angela Bos, Laura S. Manuel, Alfredo Tirado-Ramos, Pamela Kittrell, C. Jackson, Gail P. Olin
{"title":"使用流行模式发现电子健康记录数据仓库中未映射的流程图数据","authors":"A. Bokov, Angela Bos, Laura S. Manuel, Alfredo Tirado-Ramos, Pamela Kittrell, C. Jackson, Gail P. Olin","doi":"10.1109/CBMS.2017.122","DOIUrl":null,"url":null,"abstract":"We have developed a data summarization tool called Chi2notype which leverages the star schema of the Integrating Informatics from Bench to Bedside (i2b2) vendor-neutral data-warehouse platform to characterize a patient-cohort of interest. Chi2notype calculates a chi-squared statistic for every one of the hundreds of thousands of variables in an Electronic Medical Record (EMR) system and uses it to rank them from most over-represented in the cohort to most under-represented. This can be used for many purposes, including detection of adverse events, studies of socioeconomic disparities in health outcomes, and quality control. Here we demonstrate the use of Chi2notype to find un-mapped elements from nursing flowsheets used for monitoring the progress of ALS patients, thus making it possible to link them to their respective parent flowsheets in the i2b2 ontology. This, in turn, makes these flowsheets accessible to researchers performing eligibility queries or retrospective analysis on de-identified electronic health record (EHR) data.","PeriodicalId":141105,"journal":{"name":"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using Prevalence Patterns to Discover Un-mapped Flowsheet Data in an Electronic Health Record Data Warehouse\",\"authors\":\"A. Bokov, Angela Bos, Laura S. Manuel, Alfredo Tirado-Ramos, Pamela Kittrell, C. Jackson, Gail P. Olin\",\"doi\":\"10.1109/CBMS.2017.122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed a data summarization tool called Chi2notype which leverages the star schema of the Integrating Informatics from Bench to Bedside (i2b2) vendor-neutral data-warehouse platform to characterize a patient-cohort of interest. Chi2notype calculates a chi-squared statistic for every one of the hundreds of thousands of variables in an Electronic Medical Record (EMR) system and uses it to rank them from most over-represented in the cohort to most under-represented. This can be used for many purposes, including detection of adverse events, studies of socioeconomic disparities in health outcomes, and quality control. Here we demonstrate the use of Chi2notype to find un-mapped elements from nursing flowsheets used for monitoring the progress of ALS patients, thus making it possible to link them to their respective parent flowsheets in the i2b2 ontology. This, in turn, makes these flowsheets accessible to researchers performing eligibility queries or retrospective analysis on de-identified electronic health record (EHR) data.\",\"PeriodicalId\":141105,\"journal\":{\"name\":\"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2017.122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2017.122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们开发了一个名为Chi2notype的数据汇总工具,它利用了i2b2供应商中立数据仓库平台的星形模式来描述感兴趣的患者队列。Chi2notype为电子医疗记录(EMR)系统中成千上万个变量中的每一个计算一个卡方统计,并用它来对它们进行排序,从最具代表性到最具代表性。这可用于许多目的,包括检测不良事件、研究健康结果中的社会经济差异和质量控制。在这里,我们演示了使用Chi2notype从用于监测ALS患者进展的护理流程中找到未映射的元素,从而可以将它们链接到i2b2本体中各自的父流程。这反过来又使研究人员可以访问这些流程表,对去标识的电子健康记录(EHR)数据进行资格查询或回顾性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Prevalence Patterns to Discover Un-mapped Flowsheet Data in an Electronic Health Record Data Warehouse
We have developed a data summarization tool called Chi2notype which leverages the star schema of the Integrating Informatics from Bench to Bedside (i2b2) vendor-neutral data-warehouse platform to characterize a patient-cohort of interest. Chi2notype calculates a chi-squared statistic for every one of the hundreds of thousands of variables in an Electronic Medical Record (EMR) system and uses it to rank them from most over-represented in the cohort to most under-represented. This can be used for many purposes, including detection of adverse events, studies of socioeconomic disparities in health outcomes, and quality control. Here we demonstrate the use of Chi2notype to find un-mapped elements from nursing flowsheets used for monitoring the progress of ALS patients, thus making it possible to link them to their respective parent flowsheets in the i2b2 ontology. This, in turn, makes these flowsheets accessible to researchers performing eligibility queries or retrospective analysis on de-identified electronic health record (EHR) data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信