结合文本特征的神经网络脱题文本检测

Zhanyuan Yang, Hanfeng Liu, Minping Chen, xia li
{"title":"结合文本特征的神经网络脱题文本检测","authors":"Zhanyuan Yang, Hanfeng Liu, Minping Chen, xia li","doi":"10.1109/CIS2018.2018.00042","DOIUrl":null,"url":null,"abstract":"Off-topic text detection refers to detecting whether the topic of a text deviates from the required topic. Our work addresses the problem of predicting whether a text is off-topic or not for a given prompt. Prior studies use classical content vector to represent the text and predict it with machine learning based methods. To our knowledge, there are few studies investigated this task using neural networks. In this paper, we propose to use a combination of neural features and surface text features as a representation of a text. Then we input the hidden representation of the text into a softmax layer to get the probability of the prediction. We do several experiments on four datasets. The experimental results show that our method achieves better performance compared with the baseline method.","PeriodicalId":185099,"journal":{"name":"2018 14th International Conference on Computational Intelligence and Security (CIS)","volume":"39 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Off-Topic Text Detection Based on Neural Networks Combined with Text Features\",\"authors\":\"Zhanyuan Yang, Hanfeng Liu, Minping Chen, xia li\",\"doi\":\"10.1109/CIS2018.2018.00042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Off-topic text detection refers to detecting whether the topic of a text deviates from the required topic. Our work addresses the problem of predicting whether a text is off-topic or not for a given prompt. Prior studies use classical content vector to represent the text and predict it with machine learning based methods. To our knowledge, there are few studies investigated this task using neural networks. In this paper, we propose to use a combination of neural features and surface text features as a representation of a text. Then we input the hidden representation of the text into a softmax layer to get the probability of the prediction. We do several experiments on four datasets. The experimental results show that our method achieves better performance compared with the baseline method.\",\"PeriodicalId\":185099,\"journal\":{\"name\":\"2018 14th International Conference on Computational Intelligence and Security (CIS)\",\"volume\":\"39 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th International Conference on Computational Intelligence and Security (CIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS2018.2018.00042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS2018.2018.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

偏离主题文本检测是指检测文本的主题是否偏离了需要的主题。我们的工作解决了在给定提示下预测文本是否偏离主题的问题。先前的研究使用经典内容向量来表示文本,并使用基于机器学习的方法进行预测。据我们所知,很少有研究使用神经网络来研究这一任务。在本文中,我们建议使用神经特征和表面文本特征的组合作为文本的表示。然后,我们将文本的隐藏表示输入到softmax层中,以获得预测的概率。我们在四个数据集上做了几个实验。实验结果表明,与基线方法相比,我们的方法取得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Off-Topic Text Detection Based on Neural Networks Combined with Text Features
Off-topic text detection refers to detecting whether the topic of a text deviates from the required topic. Our work addresses the problem of predicting whether a text is off-topic or not for a given prompt. Prior studies use classical content vector to represent the text and predict it with machine learning based methods. To our knowledge, there are few studies investigated this task using neural networks. In this paper, we propose to use a combination of neural features and surface text features as a representation of a text. Then we input the hidden representation of the text into a softmax layer to get the probability of the prediction. We do several experiments on four datasets. The experimental results show that our method achieves better performance compared with the baseline method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信