线性模型预测控制的正则牛顿解算器

A. Malyshev, R. Quirynen, A. Knyazev, S. D. Cairano
{"title":"线性模型预测控制的正则牛顿解算器","authors":"A. Malyshev, R. Quirynen, A. Knyazev, S. D. Cairano","doi":"10.23919/ECC.2018.8550438","DOIUrl":null,"url":null,"abstract":"We investigate direct numerical solvers in linear model predictive control, where the prediction model is given by linear systems subject to linear inequality constraints on the state and the input, and the performance index is convex and quadratic. The inequality constraints are treated by the primal-dual interior-point method. We propose a novel direct solver based on the augmented Lagrangian regularization of a reduced Hessian. The new solver has the same arithmetic complexity as the factorized Riccati recursion. The direct solver can be implemented in terms of BLAS3 matrix operations.","PeriodicalId":222660,"journal":{"name":"2018 European Control Conference (ECC)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A regularized Newton solver for linear model predictive control\",\"authors\":\"A. Malyshev, R. Quirynen, A. Knyazev, S. D. Cairano\",\"doi\":\"10.23919/ECC.2018.8550438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate direct numerical solvers in linear model predictive control, where the prediction model is given by linear systems subject to linear inequality constraints on the state and the input, and the performance index is convex and quadratic. The inequality constraints are treated by the primal-dual interior-point method. We propose a novel direct solver based on the augmented Lagrangian regularization of a reduced Hessian. The new solver has the same arithmetic complexity as the factorized Riccati recursion. The direct solver can be implemented in terms of BLAS3 matrix operations.\",\"PeriodicalId\":222660,\"journal\":{\"name\":\"2018 European Control Conference (ECC)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 European Control Conference (ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ECC.2018.8550438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC.2018.8550438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

研究了线性模型预测控制中的直接数值解,其中预测模型是由状态和输入受线性不等式约束的线性系统给出的,并且性能指标是凸二次的。用原对偶内点法处理不等式约束。提出了一种新的直接求解方法,该方法基于简化Hessian的增广拉格朗日正则化。新的求解器具有与分解的Riccati递归相同的算法复杂度。直接求解器可以根据BLAS3矩阵运算来实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A regularized Newton solver for linear model predictive control
We investigate direct numerical solvers in linear model predictive control, where the prediction model is given by linear systems subject to linear inequality constraints on the state and the input, and the performance index is convex and quadratic. The inequality constraints are treated by the primal-dual interior-point method. We propose a novel direct solver based on the augmented Lagrangian regularization of a reduced Hessian. The new solver has the same arithmetic complexity as the factorized Riccati recursion. The direct solver can be implemented in terms of BLAS3 matrix operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信