矢量传感器过程的快速四元数值变步长随机梯度学习算法

Mingxuan Wang, C. C. Took, D. Mandic
{"title":"矢量传感器过程的快速四元数值变步长随机梯度学习算法","authors":"Mingxuan Wang, C. C. Took, D. Mandic","doi":"10.1109/IJCNN.2011.6033585","DOIUrl":null,"url":null,"abstract":"We introduce a class of gradient adaptive stepsize algorithms for quaternion valued adaptive filtering based on three- and four-dimensional vector sensors. This equips the recently introduced quaternion least mean square (QLMS) algorithm with enhanced tracking ability and enables it to be more responsive to dynamically changing environments, while maintaining its desired characteristics of catering for large dynamical differences and coupling between signal components. For generality, the analysis is performed for the widely linear signal model, which by virtue of accounting for signal noncircularity, is optimal in the mean squared error (MSE) sense for both second order circular (proper) and noncircular (improper) processes. The widely linear QLMS (WL-QLMS) employing the proposed adaptive stepsize modifications is shown to provide enhanced performance for both synthetic and real world quaternion valued signals. Simulations include signals with drastically different component dynamics, such as four dimensional quaternion comprising three dimensional turbulent wind and air temperature for renewable energy applications.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A class of fast quaternion valued variable stepsize stochastic gradient learning algorithms for vector sensor processes\",\"authors\":\"Mingxuan Wang, C. C. Took, D. Mandic\",\"doi\":\"10.1109/IJCNN.2011.6033585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a class of gradient adaptive stepsize algorithms for quaternion valued adaptive filtering based on three- and four-dimensional vector sensors. This equips the recently introduced quaternion least mean square (QLMS) algorithm with enhanced tracking ability and enables it to be more responsive to dynamically changing environments, while maintaining its desired characteristics of catering for large dynamical differences and coupling between signal components. For generality, the analysis is performed for the widely linear signal model, which by virtue of accounting for signal noncircularity, is optimal in the mean squared error (MSE) sense for both second order circular (proper) and noncircular (improper) processes. The widely linear QLMS (WL-QLMS) employing the proposed adaptive stepsize modifications is shown to provide enhanced performance for both synthetic and real world quaternion valued signals. Simulations include signals with drastically different component dynamics, such as four dimensional quaternion comprising three dimensional turbulent wind and air temperature for renewable energy applications.\",\"PeriodicalId\":415833,\"journal\":{\"name\":\"The 2011 International Joint Conference on Neural Networks\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2011 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2011.6033585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

介绍了一类基于三维和四维矢量传感器的四元数值自适应滤波的梯度自适应步长算法。这使最近引入的四元数最小均方(QLMS)算法具有增强的跟踪能力,使其能够更好地响应动态变化的环境,同时保持其满足大动态差异和信号分量之间耦合的所需特性。为了通用性,对广义线性信号模型进行了分析,该模型由于考虑了信号的非圆性,在均方误差(MSE)意义上对二阶圆(适当)和非圆(不适当)过程都是最优的。广泛线性QLMS (WL-QLMS)采用所提出的自适应步长修改,为合成和现实世界的四元数值信号提供了增强的性能。模拟包括具有完全不同组分动力学的信号,例如可再生能源应用中包含三维湍流风和空气温度的四维四元数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A class of fast quaternion valued variable stepsize stochastic gradient learning algorithms for vector sensor processes
We introduce a class of gradient adaptive stepsize algorithms for quaternion valued adaptive filtering based on three- and four-dimensional vector sensors. This equips the recently introduced quaternion least mean square (QLMS) algorithm with enhanced tracking ability and enables it to be more responsive to dynamically changing environments, while maintaining its desired characteristics of catering for large dynamical differences and coupling between signal components. For generality, the analysis is performed for the widely linear signal model, which by virtue of accounting for signal noncircularity, is optimal in the mean squared error (MSE) sense for both second order circular (proper) and noncircular (improper) processes. The widely linear QLMS (WL-QLMS) employing the proposed adaptive stepsize modifications is shown to provide enhanced performance for both synthetic and real world quaternion valued signals. Simulations include signals with drastically different component dynamics, such as four dimensional quaternion comprising three dimensional turbulent wind and air temperature for renewable energy applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信