Elizabeth Kwan, Pei-Ling Hsu, Jheng-He Liang, Yi-Shin Chen
{"title":"基于关键字演化图序列的社交流事件识别","authors":"Elizabeth Kwan, Pei-Ling Hsu, Jheng-He Liang, Yi-Shin Chen","doi":"10.1145/2492517.2492528","DOIUrl":null,"url":null,"abstract":"Social networks, which have become extremely popular nowadays, contain a tremendous amount of user-generated content about real-world events. This user-generated content can naturally reflect the real-world event as they happen, and sometimes even ahead of the newswire. The goal of this work is to identify events from social streams. A model called “keyword-based evolving graph sequences” (kEGS) is proposed to capture the characteristics of information propagation in social streams. The experimental results show the usefulness of our approach in identifying real-world events in social streams.","PeriodicalId":442230,"journal":{"name":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","volume":"177 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Event identification for social streams using keyword-based evolving graph sequences\",\"authors\":\"Elizabeth Kwan, Pei-Ling Hsu, Jheng-He Liang, Yi-Shin Chen\",\"doi\":\"10.1145/2492517.2492528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social networks, which have become extremely popular nowadays, contain a tremendous amount of user-generated content about real-world events. This user-generated content can naturally reflect the real-world event as they happen, and sometimes even ahead of the newswire. The goal of this work is to identify events from social streams. A model called “keyword-based evolving graph sequences” (kEGS) is proposed to capture the characteristics of information propagation in social streams. The experimental results show the usefulness of our approach in identifying real-world events in social streams.\",\"PeriodicalId\":442230,\"journal\":{\"name\":\"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)\",\"volume\":\"177 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2492517.2492528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2492517.2492528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Event identification for social streams using keyword-based evolving graph sequences
Social networks, which have become extremely popular nowadays, contain a tremendous amount of user-generated content about real-world events. This user-generated content can naturally reflect the real-world event as they happen, and sometimes even ahead of the newswire. The goal of this work is to identify events from social streams. A model called “keyword-based evolving graph sequences” (kEGS) is proposed to capture the characteristics of information propagation in social streams. The experimental results show the usefulness of our approach in identifying real-world events in social streams.