土耳其非正式文本的条件随机场命名实体识别

Serap Ozkaya, B. Diri
{"title":"土耳其非正式文本的条件随机场命名实体识别","authors":"Serap Ozkaya, B. Diri","doi":"10.1109/SIU.2011.5929737","DOIUrl":null,"url":null,"abstract":"Named Entity Recognition (NER) being one of the areas of Natural Language processing can be domain dependent or independent for formal and informal texts aims to extract information about name entity such as person, location, organization, dates, formula and money. Rule Based methods and machine learning methods can be implemented in the system. In this study, Conditional Random Fields has been used to extract name entities which are person, location and organization names from informal texts.","PeriodicalId":114797,"journal":{"name":"2011 IEEE 19th Signal Processing and Communications Applications Conference (SIU)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Named Entity Recognition by Conditional Random Fields from Turkish informal texts\",\"authors\":\"Serap Ozkaya, B. Diri\",\"doi\":\"10.1109/SIU.2011.5929737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Named Entity Recognition (NER) being one of the areas of Natural Language processing can be domain dependent or independent for formal and informal texts aims to extract information about name entity such as person, location, organization, dates, formula and money. Rule Based methods and machine learning methods can be implemented in the system. In this study, Conditional Random Fields has been used to extract name entities which are person, location and organization names from informal texts.\",\"PeriodicalId\":114797,\"journal\":{\"name\":\"2011 IEEE 19th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 19th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2011.5929737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 19th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2011.5929737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

命名实体识别(NER)是自然语言处理的一个领域,对于正式和非正式文本来说,它可以是领域依赖或独立的,目的是提取有关名称实体的信息,如人、位置、组织、日期、公式和金钱。系统中可以实现基于规则的方法和机器学习方法。在本研究中,使用条件随机场从非正式文本中提取人名、地名和组织名称实体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Named Entity Recognition by Conditional Random Fields from Turkish informal texts
Named Entity Recognition (NER) being one of the areas of Natural Language processing can be domain dependent or independent for formal and informal texts aims to extract information about name entity such as person, location, organization, dates, formula and money. Rule Based methods and machine learning methods can be implemented in the system. In this study, Conditional Random Fields has been used to extract name entities which are person, location and organization names from informal texts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信