模糊Kohonen聚类网络

E. Tsao, J. Bezdek, N. Pal
{"title":"模糊Kohonen聚类网络","authors":"E. Tsao, J. Bezdek, N. Pal","doi":"10.1109/FUZZY.1992.258797","DOIUrl":null,"url":null,"abstract":"The authors propose a fuzzy Kohonen clustering network which integrates the fuzzy c-means (FCM) model into the learning rate and updating strategies of the Kohonen network. This yields an optimization problem related to FCM, and the numerical results show improved convergence as well as reduced labeling errors. It is proved that the proposed scheme is equivalent to the c-means algorithms. The new method can be viewed as a Kohonen type of FCM, but it is self-organizing, since the size of the update neighborhood and the learning rate in the competitive layer are automatically adjusted during learning. Anderson's IRIS data were used to illustrate this method. The results are compared with the standard Kohonen approach.<<ETX>>","PeriodicalId":222263,"journal":{"name":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","volume":"68 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"510","resultStr":"{\"title\":\"Fuzzy Kohonen clustering networks\",\"authors\":\"E. Tsao, J. Bezdek, N. Pal\",\"doi\":\"10.1109/FUZZY.1992.258797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors propose a fuzzy Kohonen clustering network which integrates the fuzzy c-means (FCM) model into the learning rate and updating strategies of the Kohonen network. This yields an optimization problem related to FCM, and the numerical results show improved convergence as well as reduced labeling errors. It is proved that the proposed scheme is equivalent to the c-means algorithms. The new method can be viewed as a Kohonen type of FCM, but it is self-organizing, since the size of the update neighborhood and the learning rate in the competitive layer are automatically adjusted during learning. Anderson's IRIS data were used to illustrate this method. The results are compared with the standard Kohonen approach.<<ETX>>\",\"PeriodicalId\":222263,\"journal\":{\"name\":\"[1992 Proceedings] IEEE International Conference on Fuzzy Systems\",\"volume\":\"68 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"510\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992 Proceedings] IEEE International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.1992.258797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1992.258797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 510

摘要

作者提出了一种模糊Kohonen聚类网络,将模糊c-均值(FCM)模型集成到Kohonen网络的学习率和更新策略中。这产生了一个与FCM相关的优化问题,数值结果表明收敛性得到了改善,标记误差也减少了。证明了该方案与c均值算法是等价的。新方法可以看作是Kohonen类型的FCM,但它是自组织的,因为更新邻域的大小和竞争层的学习率在学习过程中自动调整。使用Anderson的IRIS数据来说明这种方法。结果与标准Kohonen方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy Kohonen clustering networks
The authors propose a fuzzy Kohonen clustering network which integrates the fuzzy c-means (FCM) model into the learning rate and updating strategies of the Kohonen network. This yields an optimization problem related to FCM, and the numerical results show improved convergence as well as reduced labeling errors. It is proved that the proposed scheme is equivalent to the c-means algorithms. The new method can be viewed as a Kohonen type of FCM, but it is self-organizing, since the size of the update neighborhood and the learning rate in the competitive layer are automatically adjusted during learning. Anderson's IRIS data were used to illustrate this method. The results are compared with the standard Kohonen approach.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信