流行病的卷积模型

Barducci Alessandro
{"title":"流行病的卷积模型","authors":"Barducci Alessandro","doi":"10.17352/amp.000063","DOIUrl":null,"url":null,"abstract":"Traditional deterministic modeling of epidemics is usually based on a linear system of differential equations in which compartment transitions are proportional to their population, implicitly assuming an exponential process for leaving a compartment as happens in radioactive decay. Nonetheless, this assumption is quite unrealistic since it permits a class transition such as the passage from illness to recovery that does not depend on the time an individual got infected. This trouble significantly affects the time evolution of epidemy computed by these models. This paper describes a new deterministic epidemic model in which transitions among different population classes are described by a convolutional law connecting the input and output fluxes of each class. The new model guarantees that class changes always take place according to a realistic timing, which is defined by the impulse response function of that transition, avoiding model output fluxes by the exponential decay typical of previous models. The model contains five population compartments and can take into consideration healthy carriers and recovered-to-susceptible transition. The paper provides a complete mathematical description of the convolutional model and presents three sets of simulations that show its performance. A comparison with predictions of the SIR model is given. Outcomes of simulation of the COVID-19 pandemic are discussed which predicts the truly observed time changes of the dynamic case-fatality rate. The new model foresees the possibility of successive epidemic waves as well as the asymptotic instauration of a quasi-stationary regime of lower infection circulation that prevents a definite stopping of the epidemy. We show the existence of a quadrature function that formally solves the system of equations of the convolutive and the SIR models and whose asymptotic limit roughly matches the epidemic basic reproduction number.","PeriodicalId":430514,"journal":{"name":"Annals of Mathematics and Physics","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convolutional modelling of epidemics\",\"authors\":\"Barducci Alessandro\",\"doi\":\"10.17352/amp.000063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional deterministic modeling of epidemics is usually based on a linear system of differential equations in which compartment transitions are proportional to their population, implicitly assuming an exponential process for leaving a compartment as happens in radioactive decay. Nonetheless, this assumption is quite unrealistic since it permits a class transition such as the passage from illness to recovery that does not depend on the time an individual got infected. This trouble significantly affects the time evolution of epidemy computed by these models. This paper describes a new deterministic epidemic model in which transitions among different population classes are described by a convolutional law connecting the input and output fluxes of each class. The new model guarantees that class changes always take place according to a realistic timing, which is defined by the impulse response function of that transition, avoiding model output fluxes by the exponential decay typical of previous models. The model contains five population compartments and can take into consideration healthy carriers and recovered-to-susceptible transition. The paper provides a complete mathematical description of the convolutional model and presents three sets of simulations that show its performance. A comparison with predictions of the SIR model is given. Outcomes of simulation of the COVID-19 pandemic are discussed which predicts the truly observed time changes of the dynamic case-fatality rate. The new model foresees the possibility of successive epidemic waves as well as the asymptotic instauration of a quasi-stationary regime of lower infection circulation that prevents a definite stopping of the epidemy. We show the existence of a quadrature function that formally solves the system of equations of the convolutive and the SIR models and whose asymptotic limit roughly matches the epidemic basic reproduction number.\",\"PeriodicalId\":430514,\"journal\":{\"name\":\"Annals of Mathematics and Physics\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17352/amp.000063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17352/amp.000063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

流行病的传统确定性建模通常基于一个线性微分方程组,其中隔室转换与它们的种群成正比,隐含地假设离开隔室的过程是指数过程,就像在放射性衰变中发生的那样。尽管如此,这种假设是相当不现实的,因为它允许一个阶级转变,如从疾病到康复的过渡,而不取决于个人感染的时间。这一问题对这些模型计算的流行病的时间演化有显著影响。本文描述了一种新的确定性流行病模型,该模型用连接每一类输入和输出通量的卷积律来描述不同种群之间的转移。新模型保证了类的变化总是根据一个真实的时间发生,这个时间是由该过渡的脉冲响应函数定义的,避免了以前模型典型的指数衰减的模型输出通量。该模型包含5个种群区室,可以考虑健康携带者和恢复易感者的过渡。本文给出了卷积模型的完整数学描述,并给出了三组仿真来证明其性能。并与SIR模型的预测结果进行了比较。讨论了COVID-19大流行的模拟结果,该结果预测了真实观察到的动态病死率的时间变化。新模型预测了连续流行波的可能性,以及逐渐恢复低感染循环的准平稳状态,以防止流行病的明确停止。我们证明了一个积分函数的存在性,它正式地解出了卷积模型和SIR模型的方程组,并且它的渐近极限与流行病的基本再现数大致匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convolutional modelling of epidemics
Traditional deterministic modeling of epidemics is usually based on a linear system of differential equations in which compartment transitions are proportional to their population, implicitly assuming an exponential process for leaving a compartment as happens in radioactive decay. Nonetheless, this assumption is quite unrealistic since it permits a class transition such as the passage from illness to recovery that does not depend on the time an individual got infected. This trouble significantly affects the time evolution of epidemy computed by these models. This paper describes a new deterministic epidemic model in which transitions among different population classes are described by a convolutional law connecting the input and output fluxes of each class. The new model guarantees that class changes always take place according to a realistic timing, which is defined by the impulse response function of that transition, avoiding model output fluxes by the exponential decay typical of previous models. The model contains five population compartments and can take into consideration healthy carriers and recovered-to-susceptible transition. The paper provides a complete mathematical description of the convolutional model and presents three sets of simulations that show its performance. A comparison with predictions of the SIR model is given. Outcomes of simulation of the COVID-19 pandemic are discussed which predicts the truly observed time changes of the dynamic case-fatality rate. The new model foresees the possibility of successive epidemic waves as well as the asymptotic instauration of a quasi-stationary regime of lower infection circulation that prevents a definite stopping of the epidemy. We show the existence of a quadrature function that formally solves the system of equations of the convolutive and the SIR models and whose asymptotic limit roughly matches the epidemic basic reproduction number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信