通过分析和过滤Twitter数据对流感爆发进行分类

Elizabeth Healy, Husna Siddiqui, Aspen Olmsted
{"title":"通过分析和过滤Twitter数据对流感爆发进行分类","authors":"Elizabeth Healy, Husna Siddiqui, Aspen Olmsted","doi":"10.23919/ICITST.2017.8356381","DOIUrl":null,"url":null,"abstract":"This paper uses twitter streaming and filtering techniques to determine which cities the flu is most prevalent in real time. The Twitter streaming API was used to collect data and filter using keywords and location. Our results show that more heavily populated cities have more cases of the flu.","PeriodicalId":440665,"journal":{"name":"2017 12th International Conference for Internet Technology and Secured Transactions (ICITST)","volume":"21 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classifying influenza outbreaks by analyzing and filtering Twitter data\",\"authors\":\"Elizabeth Healy, Husna Siddiqui, Aspen Olmsted\",\"doi\":\"10.23919/ICITST.2017.8356381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper uses twitter streaming and filtering techniques to determine which cities the flu is most prevalent in real time. The Twitter streaming API was used to collect data and filter using keywords and location. Our results show that more heavily populated cities have more cases of the flu.\",\"PeriodicalId\":440665,\"journal\":{\"name\":\"2017 12th International Conference for Internet Technology and Secured Transactions (ICITST)\",\"volume\":\"21 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th International Conference for Internet Technology and Secured Transactions (ICITST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICITST.2017.8356381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Conference for Internet Technology and Secured Transactions (ICITST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICITST.2017.8356381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文使用twitter流媒体和过滤技术来实时确定流感最流行的城市。Twitter流API用于收集数据并使用关键字和位置进行过滤。我们的研究结果表明,人口越稠密的城市,流感病例越多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classifying influenza outbreaks by analyzing and filtering Twitter data
This paper uses twitter streaming and filtering techniques to determine which cities the flu is most prevalent in real time. The Twitter streaming API was used to collect data and filter using keywords and location. Our results show that more heavily populated cities have more cases of the flu.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信