基于集成的入侵检测纠错输出代码

Shaza Merghani AbdElrahman, A. Abraham
{"title":"基于集成的入侵检测纠错输出代码","authors":"Shaza Merghani AbdElrahman, A. Abraham","doi":"10.1109/HIS.2014.7086194","DOIUrl":null,"url":null,"abstract":"Intrusion Detection System is an essential part in computer security. Researchers have proposed many methods but most of them suffer from low detection rates and high false alarm rates. In this paper, we try to tackle the class imbalance problem, increase detection rates for each class and minimize false alarms in intrusion detection system. We test the performance of seven classifiers using Bagging and AdaBoost ensemble methods. We proposed a new hybrid ensemble for intrusion detection based on Error Correcting Output Code (ECOC) approach.","PeriodicalId":161103,"journal":{"name":"2014 14th International Conference on Hybrid Intelligent Systems","volume":"70 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Intrusion detection using error correcting output code based ensemble\",\"authors\":\"Shaza Merghani AbdElrahman, A. Abraham\",\"doi\":\"10.1109/HIS.2014.7086194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intrusion Detection System is an essential part in computer security. Researchers have proposed many methods but most of them suffer from low detection rates and high false alarm rates. In this paper, we try to tackle the class imbalance problem, increase detection rates for each class and minimize false alarms in intrusion detection system. We test the performance of seven classifiers using Bagging and AdaBoost ensemble methods. We proposed a new hybrid ensemble for intrusion detection based on Error Correcting Output Code (ECOC) approach.\",\"PeriodicalId\":161103,\"journal\":{\"name\":\"2014 14th International Conference on Hybrid Intelligent Systems\",\"volume\":\"70 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 14th International Conference on Hybrid Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2014.7086194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2014.7086194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

入侵检测系统是计算机安全的重要组成部分。研究人员提出了许多方法,但大多存在检出率低、误报率高的问题。本文试图解决入侵检测系统中的类不平衡问题,提高各类的检测率,最大限度地减少误报。我们使用Bagging和AdaBoost集成方法测试了七个分类器的性能。提出了一种基于纠错输出码(ECOC)方法的混合集成入侵检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intrusion detection using error correcting output code based ensemble
Intrusion Detection System is an essential part in computer security. Researchers have proposed many methods but most of them suffer from low detection rates and high false alarm rates. In this paper, we try to tackle the class imbalance problem, increase detection rates for each class and minimize false alarms in intrusion detection system. We test the performance of seven classifiers using Bagging and AdaBoost ensemble methods. We proposed a new hybrid ensemble for intrusion detection based on Error Correcting Output Code (ECOC) approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信