一种基于遗传和分类器特征选择的癫痫发作预测系统方法

M. D'Alessandro, G. Vachtsevanos, R. Esteller, J. Echauz, Denise Sewell, B. Litt
{"title":"一种基于遗传和分类器特征选择的癫痫发作预测系统方法","authors":"M. D'Alessandro, G. Vachtsevanos, R. Esteller, J. Echauz, Denise Sewell, B. Litt","doi":"10.1109/ICDSP.2002.1028162","DOIUrl":null,"url":null,"abstract":"Currently, there is no standard approach for evaluating the intracranial encephalographic signals for seizure prediction. This study evaluates the IEEG signals by applying a systematic approach to feature selection, classification and validation to predict seizures. After preprocessing and processing, a genetic algorithm selects reasonable features off-line from a preselected group of features to serve as inputs to the classifier based feature selection process. A probabilistic neural network is used to select the optimal feature vector using a reed forward sequential approach on the training data followed by classification. A study of four patients resulted in a 62.5% average probability of prediction and a block false positive rate of 0.2775 false positive predictions per hour.","PeriodicalId":351073,"journal":{"name":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","volume":"75 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A systematic approach to seizure prediction using genetic and classifier based feature selection\",\"authors\":\"M. D'Alessandro, G. Vachtsevanos, R. Esteller, J. Echauz, Denise Sewell, B. Litt\",\"doi\":\"10.1109/ICDSP.2002.1028162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, there is no standard approach for evaluating the intracranial encephalographic signals for seizure prediction. This study evaluates the IEEG signals by applying a systematic approach to feature selection, classification and validation to predict seizures. After preprocessing and processing, a genetic algorithm selects reasonable features off-line from a preselected group of features to serve as inputs to the classifier based feature selection process. A probabilistic neural network is used to select the optimal feature vector using a reed forward sequential approach on the training data followed by classification. A study of four patients resulted in a 62.5% average probability of prediction and a block false positive rate of 0.2775 false positive predictions per hour.\",\"PeriodicalId\":351073,\"journal\":{\"name\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"volume\":\"75 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2002.1028162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2002.1028162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

目前,尚无标准的方法来评估颅内脑电图信号对癫痫发作的预测。本研究通过应用系统的特征选择、分类和验证方法来评估脑电图信号,以预测癫痫发作。遗传算法经过预处理和处理后,从预先选择的特征组中离线选择合理的特征,作为基于分类器的特征选择过程的输入。利用概率神经网络对训练数据进行前向排序,选择最优特征向量,然后进行分类。一项针对4名患者的研究结果显示,预测的平均概率为62.5%,每小时的误报率为0.2775。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A systematic approach to seizure prediction using genetic and classifier based feature selection
Currently, there is no standard approach for evaluating the intracranial encephalographic signals for seizure prediction. This study evaluates the IEEG signals by applying a systematic approach to feature selection, classification and validation to predict seizures. After preprocessing and processing, a genetic algorithm selects reasonable features off-line from a preselected group of features to serve as inputs to the classifier based feature selection process. A probabilistic neural network is used to select the optimal feature vector using a reed forward sequential approach on the training data followed by classification. A study of four patients resulted in a 62.5% average probability of prediction and a block false positive rate of 0.2775 false positive predictions per hour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信