基于RLS算法的脑电信号电力线干扰消除

Muzamil Ahmed, Amber Farooq, Fatima Farooq, N. Rashid, Ayesha Zeb
{"title":"基于RLS算法的脑电信号电力线干扰消除","authors":"Muzamil Ahmed, Amber Farooq, Fatima Farooq, N. Rashid, Ayesha Zeb","doi":"10.1109/ICRAI47710.2019.8967392","DOIUrl":null,"url":null,"abstract":"This paper investigates a new approach employing recursive least square (RLS) adaptive algorithm for cancellation of power line interference (PLI) from Electroencephalogram (EEG) signal. The EEG signal is taken from the standard MIT-BIH Polysomnographic database. The proposed RLS algorithm based noise canceller is compared with least mean square (LMS) and normalized LMS (NLMS) algorithm based noise canceller. The results illustrate that adaptive algorithms can efficiently estimate and reject the noise in acquired EEG signals however; RLS algorithm gives better performance as compared to LMS and NLMS algorithm. Thus, the proposed noise canceller enhances the reliability of estimated EEG signal which can subsequently be utilized for establishing Brain Computer Interface.","PeriodicalId":429384,"journal":{"name":"2019 International Conference on Robotics and Automation in Industry (ICRAI)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Power Line Interference Cancellation from EEG Signals using RLS Algorithm\",\"authors\":\"Muzamil Ahmed, Amber Farooq, Fatima Farooq, N. Rashid, Ayesha Zeb\",\"doi\":\"10.1109/ICRAI47710.2019.8967392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates a new approach employing recursive least square (RLS) adaptive algorithm for cancellation of power line interference (PLI) from Electroencephalogram (EEG) signal. The EEG signal is taken from the standard MIT-BIH Polysomnographic database. The proposed RLS algorithm based noise canceller is compared with least mean square (LMS) and normalized LMS (NLMS) algorithm based noise canceller. The results illustrate that adaptive algorithms can efficiently estimate and reject the noise in acquired EEG signals however; RLS algorithm gives better performance as compared to LMS and NLMS algorithm. Thus, the proposed noise canceller enhances the reliability of estimated EEG signal which can subsequently be utilized for establishing Brain Computer Interface.\",\"PeriodicalId\":429384,\"journal\":{\"name\":\"2019 International Conference on Robotics and Automation in Industry (ICRAI)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Robotics and Automation in Industry (ICRAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRAI47710.2019.8967392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Robotics and Automation in Industry (ICRAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAI47710.2019.8967392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了一种利用递推最小二乘自适应算法消除脑电图信号中电力线干扰的新方法。脑电图信号取自标准的MIT-BIH多导睡眠图数据库。将RLS算法与最小均方(LMS)和归一化LMS (NLMS)算法相比较。结果表明,自适应算法能够有效地估计和抑制采集到的脑电信号中的噪声;与LMS和NLMS算法相比,RLS算法具有更好的性能。因此,所提出的消噪方法提高了脑电信号估计的可靠性,可用于建立脑机接口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power Line Interference Cancellation from EEG Signals using RLS Algorithm
This paper investigates a new approach employing recursive least square (RLS) adaptive algorithm for cancellation of power line interference (PLI) from Electroencephalogram (EEG) signal. The EEG signal is taken from the standard MIT-BIH Polysomnographic database. The proposed RLS algorithm based noise canceller is compared with least mean square (LMS) and normalized LMS (NLMS) algorithm based noise canceller. The results illustrate that adaptive algorithms can efficiently estimate and reject the noise in acquired EEG signals however; RLS algorithm gives better performance as compared to LMS and NLMS algorithm. Thus, the proposed noise canceller enhances the reliability of estimated EEG signal which can subsequently be utilized for establishing Brain Computer Interface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信