医学mcq的自动问答:它能比信息检索更进一步吗?

L. Ha, Victoria Yaneva
{"title":"医学mcq的自动问答:它能比信息检索更进一步吗?","authors":"L. Ha, Victoria Yaneva","doi":"10.26615/978-954-452-056-4_049","DOIUrl":null,"url":null,"abstract":"We present a novel approach to automatic question answering that does not depend on the performance of an information retrieval (IR) system and does not require that the training data come from the same source as the questions. We evaluate the system performance on a challenging set of university-level medical science multiple-choice questions. Best performance is achieved when combining a neural approach with an IR approach, both of which work independently. Unlike previous approaches, the system achieves statistically significant improvement over the random guess baseline even for questions that are labeled as challenging based on the performance of baseline solvers.","PeriodicalId":284493,"journal":{"name":"Recent Advances in Natural Language Processing","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Automatic Question Answering for Medical MCQs: Can It go Further than Information Retrieval?\",\"authors\":\"L. Ha, Victoria Yaneva\",\"doi\":\"10.26615/978-954-452-056-4_049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel approach to automatic question answering that does not depend on the performance of an information retrieval (IR) system and does not require that the training data come from the same source as the questions. We evaluate the system performance on a challenging set of university-level medical science multiple-choice questions. Best performance is achieved when combining a neural approach with an IR approach, both of which work independently. Unlike previous approaches, the system achieves statistically significant improvement over the random guess baseline even for questions that are labeled as challenging based on the performance of baseline solvers.\",\"PeriodicalId\":284493,\"journal\":{\"name\":\"Recent Advances in Natural Language Processing\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Advances in Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26615/978-954-452-056-4_049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26615/978-954-452-056-4_049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们提出了一种新的自动问答方法,它不依赖于信息检索(IR)系统的性能,也不要求训练数据与问题来自相同的来源。我们通过一组具有挑战性的大学水平的医学选择题来评估系统的性能。当神经方法与红外方法相结合时,两者都是独立工作的,从而达到最佳性能。与以前的方法不同,该系统在随机猜测基线上取得了统计上显著的改进,即使是基于基线解算者的表现而被标记为具有挑战性的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Question Answering for Medical MCQs: Can It go Further than Information Retrieval?
We present a novel approach to automatic question answering that does not depend on the performance of an information retrieval (IR) system and does not require that the training data come from the same source as the questions. We evaluate the system performance on a challenging set of university-level medical science multiple-choice questions. Best performance is achieved when combining a neural approach with an IR approach, both of which work independently. Unlike previous approaches, the system achieves statistically significant improvement over the random guess baseline even for questions that are labeled as challenging based on the performance of baseline solvers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信