{"title":"双层质子导电钙钛矿SrLa2Sc2O7的异价和等价掺杂","authors":"N. Tarasova","doi":"10.15826/elmattech.2023.2.015","DOIUrl":null,"url":null,"abstract":"Perovskite or perovskite-related structural materials are widely studied for their many functional properties. They can be used as components of energy sources such as solid oxide fuel cells. Along with classical perovskites, layered perovskites can also carry out high-temperature proton transport and are promising materials for use in electrochemical power engineering. In this paper, the possibility of heterovalent and isovalent doping of La and Sc sublattices of bilayer perovskite SrLa2Sc2O7 was made for the first time. It was shown that electrical conductivity increases in the row of bilayer perovskites SrLa2ScInO7 – SrLa2Sc2O7 – BaLa2In2O7 – BaNd2In2O7.","PeriodicalId":347425,"journal":{"name":"Electrochemical Materials and Technologies","volume":"142 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterovalent and isovalent doping of bilayer proton-conducting perovskite SrLa2Sc2O7\",\"authors\":\"N. Tarasova\",\"doi\":\"10.15826/elmattech.2023.2.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perovskite or perovskite-related structural materials are widely studied for their many functional properties. They can be used as components of energy sources such as solid oxide fuel cells. Along with classical perovskites, layered perovskites can also carry out high-temperature proton transport and are promising materials for use in electrochemical power engineering. In this paper, the possibility of heterovalent and isovalent doping of La and Sc sublattices of bilayer perovskite SrLa2Sc2O7 was made for the first time. It was shown that electrical conductivity increases in the row of bilayer perovskites SrLa2ScInO7 – SrLa2Sc2O7 – BaLa2In2O7 – BaNd2In2O7.\",\"PeriodicalId\":347425,\"journal\":{\"name\":\"Electrochemical Materials and Technologies\",\"volume\":\"142 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemical Materials and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15826/elmattech.2023.2.015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemical Materials and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/elmattech.2023.2.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Heterovalent and isovalent doping of bilayer proton-conducting perovskite SrLa2Sc2O7
Perovskite or perovskite-related structural materials are widely studied for their many functional properties. They can be used as components of energy sources such as solid oxide fuel cells. Along with classical perovskites, layered perovskites can also carry out high-temperature proton transport and are promising materials for use in electrochemical power engineering. In this paper, the possibility of heterovalent and isovalent doping of La and Sc sublattices of bilayer perovskite SrLa2Sc2O7 was made for the first time. It was shown that electrical conductivity increases in the row of bilayer perovskites SrLa2ScInO7 – SrLa2Sc2O7 – BaLa2In2O7 – BaNd2In2O7.