{"title":"结构化活动识别的无监督语法归纳","authors":"Huan-Kai Peng, Pang Wu, Jiang Zhu, J. Zhang","doi":"10.1109/ICDM.2011.74","DOIUrl":null,"url":null,"abstract":"The omnipresence of mobile sensors has brought tremendous opportunities to ubiquitous computing systems. In many natural settings, however, their broader applications are hindered by three main challenges: rarity of labels, uncertainty of activity granularities, and the difficulty of multi-dimensional sensor fusion. In this paper, we propose building a grammar to address all these challenges using a language-based approach. The proposed algorithm, called Helix, first generates an initial vocabulary using unlabeled sensor readings, followed by iteratively combining statistically collocated sub-activities across sensor dimensions and grouping similar activities together to discover higher level activities. The experiments using a 20-minute ping-pong game demonstrate favorable results compared to a Hierarchical Hidden Markov Model (HHMM) baseline. Closer investigations to the learned grammar also shows that the learned grammar captures the natural structure of the underlying activities.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Helix: Unsupervised Grammar Induction for Structured Activity Recognition\",\"authors\":\"Huan-Kai Peng, Pang Wu, Jiang Zhu, J. Zhang\",\"doi\":\"10.1109/ICDM.2011.74\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The omnipresence of mobile sensors has brought tremendous opportunities to ubiquitous computing systems. In many natural settings, however, their broader applications are hindered by three main challenges: rarity of labels, uncertainty of activity granularities, and the difficulty of multi-dimensional sensor fusion. In this paper, we propose building a grammar to address all these challenges using a language-based approach. The proposed algorithm, called Helix, first generates an initial vocabulary using unlabeled sensor readings, followed by iteratively combining statistically collocated sub-activities across sensor dimensions and grouping similar activities together to discover higher level activities. The experiments using a 20-minute ping-pong game demonstrate favorable results compared to a Hierarchical Hidden Markov Model (HHMM) baseline. Closer investigations to the learned grammar also shows that the learned grammar captures the natural structure of the underlying activities.\",\"PeriodicalId\":106216,\"journal\":{\"name\":\"2011 IEEE 11th International Conference on Data Mining\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 11th International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2011.74\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Helix: Unsupervised Grammar Induction for Structured Activity Recognition
The omnipresence of mobile sensors has brought tremendous opportunities to ubiquitous computing systems. In many natural settings, however, their broader applications are hindered by three main challenges: rarity of labels, uncertainty of activity granularities, and the difficulty of multi-dimensional sensor fusion. In this paper, we propose building a grammar to address all these challenges using a language-based approach. The proposed algorithm, called Helix, first generates an initial vocabulary using unlabeled sensor readings, followed by iteratively combining statistically collocated sub-activities across sensor dimensions and grouping similar activities together to discover higher level activities. The experiments using a 20-minute ping-pong game demonstrate favorable results compared to a Hierarchical Hidden Markov Model (HHMM) baseline. Closer investigations to the learned grammar also shows that the learned grammar captures the natural structure of the underlying activities.