基于CIELab颜色空间粗糙k均值的莲座植物叶片分割

Arunita Das, Daipayan Ghosal, Krishna Gopal Dhal
{"title":"基于CIELab颜色空间粗糙k均值的莲座植物叶片分割","authors":"Arunita Das, Daipayan Ghosal, Krishna Gopal Dhal","doi":"10.18690/978-961-286-516-0.5","DOIUrl":null,"url":null,"abstract":"Segmentation of Plant Images plays an important role in modern agriculture where it can provide accurate analysis of a plant’s growth and possi-ble anomalies. In this paper, rough set based partitional clustering technique called Rough K-Means has been utilized in CIELab color space for the proper leaf segmentation of rosette plants. The eÿcacy of the proposed technique have been analysed by comparing it with the results of tra-ditional K-Means and Fuzzy C-Means clustering algorithms. The visual and numerical results re-veal that the RKM in CIELab provides the near-est result to the ideal ground truth, hence the most eÿcient one.","PeriodicalId":282591,"journal":{"name":"Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)","volume":"222 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Leaf Segmentation of Rosette Plants using Rough K-Means in CIELab Color Space\",\"authors\":\"Arunita Das, Daipayan Ghosal, Krishna Gopal Dhal\",\"doi\":\"10.18690/978-961-286-516-0.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segmentation of Plant Images plays an important role in modern agriculture where it can provide accurate analysis of a plant’s growth and possi-ble anomalies. In this paper, rough set based partitional clustering technique called Rough K-Means has been utilized in CIELab color space for the proper leaf segmentation of rosette plants. The eÿcacy of the proposed technique have been analysed by comparing it with the results of tra-ditional K-Means and Fuzzy C-Means clustering algorithms. The visual and numerical results re-veal that the RKM in CIELab provides the near-est result to the ideal ground truth, hence the most eÿcient one.\",\"PeriodicalId\":282591,\"journal\":{\"name\":\"Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)\",\"volume\":\"222 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18690/978-961-286-516-0.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18690/978-961-286-516-0.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

植物图像的分割在现代农业中起着重要的作用,它可以提供对植物生长和可能的异常的准确分析。本文在CIELab色彩空间中,利用粗糙集分割聚类技术rough K-Means对玫瑰植物叶片进行适当分割。通过与传统的K-Means和模糊C-Means聚类算法的结果进行比较,分析了所提出技术的eÿcacy。视觉和数值结果表明,CIELab的RKM提供了最接近理想地面真值的结果,因此是最eÿcient的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leaf Segmentation of Rosette Plants using Rough K-Means in CIELab Color Space
Segmentation of Plant Images plays an important role in modern agriculture where it can provide accurate analysis of a plant’s growth and possi-ble anomalies. In this paper, rough set based partitional clustering technique called Rough K-Means has been utilized in CIELab color space for the proper leaf segmentation of rosette plants. The eÿcacy of the proposed technique have been analysed by comparing it with the results of tra-ditional K-Means and Fuzzy C-Means clustering algorithms. The visual and numerical results re-veal that the RKM in CIELab provides the near-est result to the ideal ground truth, hence the most eÿcient one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信