{"title":"关于平面曲线相交的注解","authors":"C. Ciliberto, F. Flamini, M. Zaidenberg","doi":"10.1090/CONM/733/14737","DOIUrl":null,"url":null,"abstract":"Let $D$ be a very general curve of degree $d=2\\ell-\\epsilon$ in $\\mathbb{P}^2$, with $\\epsilon\\in \\{0,1\\}$. Let $\\Gamma \\subset \\mathbb{P}^2$ be an integral curve of geometric genus $g$ and degree $m$, $\\Gamma \\neq D$, and let $\\nu: C\\to \\Gamma$ be the normalization. Let $\\delta$ be the degree of the \\emph{reduction modulo 2} of the divisor $\\nu^*(D)$ of $C$. In this paper we prove the inequality $4g+\\delta\\geqslant m(d-8+2\\epsilon)+5$. We compare this with similar inequalities due to Geng Xu and Xi Chen. Besides, we provide a brief account on genera of subvarieties in projective hypersurfaces.","PeriodicalId":432671,"journal":{"name":"Functional Analysis and Geometry","volume":"29 56","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A remark on the intersection of plane\\n curves\",\"authors\":\"C. Ciliberto, F. Flamini, M. Zaidenberg\",\"doi\":\"10.1090/CONM/733/14737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $D$ be a very general curve of degree $d=2\\\\ell-\\\\epsilon$ in $\\\\mathbb{P}^2$, with $\\\\epsilon\\\\in \\\\{0,1\\\\}$. Let $\\\\Gamma \\\\subset \\\\mathbb{P}^2$ be an integral curve of geometric genus $g$ and degree $m$, $\\\\Gamma \\\\neq D$, and let $\\\\nu: C\\\\to \\\\Gamma$ be the normalization. Let $\\\\delta$ be the degree of the \\\\emph{reduction modulo 2} of the divisor $\\\\nu^*(D)$ of $C$. In this paper we prove the inequality $4g+\\\\delta\\\\geqslant m(d-8+2\\\\epsilon)+5$. We compare this with similar inequalities due to Geng Xu and Xi Chen. Besides, we provide a brief account on genera of subvarieties in projective hypersurfaces.\",\"PeriodicalId\":432671,\"journal\":{\"name\":\"Functional Analysis and Geometry\",\"volume\":\"29 56\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/CONM/733/14737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/CONM/733/14737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let $D$ be a very general curve of degree $d=2\ell-\epsilon$ in $\mathbb{P}^2$, with $\epsilon\in \{0,1\}$. Let $\Gamma \subset \mathbb{P}^2$ be an integral curve of geometric genus $g$ and degree $m$, $\Gamma \neq D$, and let $\nu: C\to \Gamma$ be the normalization. Let $\delta$ be the degree of the \emph{reduction modulo 2} of the divisor $\nu^*(D)$ of $C$. In this paper we prove the inequality $4g+\delta\geqslant m(d-8+2\epsilon)+5$. We compare this with similar inequalities due to Geng Xu and Xi Chen. Besides, we provide a brief account on genera of subvarieties in projective hypersurfaces.