使用更少内存的快速解码器

Hien Vo Minh, Dinh Dien, HongTran Thi
{"title":"使用更少内存的快速解码器","authors":"Hien Vo Minh, Dinh Dien, HongTran Thi","doi":"10.1109/KSE.2012.11","DOIUrl":null,"url":null,"abstract":"Statistical Machine Translation (SMT) uses large amount of text corpus and complex calculation operation for translation process, which makes this method require more system resources for fast translation. In this paper, we introduce an approach of decoding in SMT using less memory but translating faster, which is more suitable for mobile applications and embedded systems. In our approach, the SMT models are stored in tree structures in order to speed up the loading process and the decoding algorithm is optimized to reduce operations. We apply our approach to English-Vietnamese and Vietnamese-English SMT systems. When translating 20,000 English sentences, which are 7.45 word lengths in average, we achieve 37.8 BLEU score, the average speed is 0.052 s. In case of Vietnamese-English system, we translate 20,000 Vietnamese sentences, which are 8.42 word lengths in average, the BLEU score is 34.63 with an average speed of 0.091 s.","PeriodicalId":122680,"journal":{"name":"2012 Fourth International Conference on Knowledge and Systems Engineering","volume":" 18","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fast Decoder Using Less Memory\",\"authors\":\"Hien Vo Minh, Dinh Dien, HongTran Thi\",\"doi\":\"10.1109/KSE.2012.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistical Machine Translation (SMT) uses large amount of text corpus and complex calculation operation for translation process, which makes this method require more system resources for fast translation. In this paper, we introduce an approach of decoding in SMT using less memory but translating faster, which is more suitable for mobile applications and embedded systems. In our approach, the SMT models are stored in tree structures in order to speed up the loading process and the decoding algorithm is optimized to reduce operations. We apply our approach to English-Vietnamese and Vietnamese-English SMT systems. When translating 20,000 English sentences, which are 7.45 word lengths in average, we achieve 37.8 BLEU score, the average speed is 0.052 s. In case of Vietnamese-English system, we translate 20,000 Vietnamese sentences, which are 8.42 word lengths in average, the BLEU score is 34.63 with an average speed of 0.091 s.\",\"PeriodicalId\":122680,\"journal\":{\"name\":\"2012 Fourth International Conference on Knowledge and Systems Engineering\",\"volume\":\" 18\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth International Conference on Knowledge and Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KSE.2012.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Knowledge and Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE.2012.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

统计机器翻译(SMT)在翻译过程中使用大量的文本语料库和复杂的计算操作,这使得该方法需要更多的系统资源来实现快速翻译。在本文中,我们介绍了一种在SMT中使用较少内存但翻译速度更快的解码方法,该方法更适合于移动应用和嵌入式系统。在我们的方法中,将SMT模型存储在树结构中以加快加载过程,并优化解码算法以减少操作。我们将我们的方法应用于英语-越南语和越南语-英语SMT系统。在翻译平均7.45个单词长度的2万个英语句子时,我们获得了37.8 BLEU分数,平均速度为0.052 s。以越南语-英语系统为例,我们翻译了2万个越南语句子,平均8.42个单词长度,BLEU得分为34.63,平均速度为0.091 s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fast Decoder Using Less Memory
Statistical Machine Translation (SMT) uses large amount of text corpus and complex calculation operation for translation process, which makes this method require more system resources for fast translation. In this paper, we introduce an approach of decoding in SMT using less memory but translating faster, which is more suitable for mobile applications and embedded systems. In our approach, the SMT models are stored in tree structures in order to speed up the loading process and the decoding algorithm is optimized to reduce operations. We apply our approach to English-Vietnamese and Vietnamese-English SMT systems. When translating 20,000 English sentences, which are 7.45 word lengths in average, we achieve 37.8 BLEU score, the average speed is 0.052 s. In case of Vietnamese-English system, we translate 20,000 Vietnamese sentences, which are 8.42 word lengths in average, the BLEU score is 34.63 with an average speed of 0.091 s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信